Neurexin and Neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity

  1. William D Constance
  2. Amrita Mukherjee
  3. Yvette E Fisher
  4. Sinziana Pop
  5. Eric Blanc
  6. Yusuke Toyama
  7. Darren W Williams  Is a corresponding author
  1. King's College London, United Kingdom
  2. Harvard Medical School, United States
  3. Berlin Institute of Health, Germany
  4. National University of Singapore, Singapore

Abstract

Building arborisations of the right size and shape is fundamental for neural network function. Live imaging in vertebrate brains strongly suggests that nascent synapses are critical for branch growth during development. The molecular mechanisms underlying this are largely unknown. Here we present a novel system in Drosophila for studying the development of complex arborisations live, in vivo during metamorphosis. In growing arborisations we see branch dynamics and localisations of presynaptic proteins very similar to the 'synaptotropic growth' described in fish/frogs. These accumulations of presynaptic proteins do not appear to be presynaptic release sites and are not paired with neurotransmitter receptors. Knockdowns of either evoked or spontaneous neurotransmission do not impact arbor growth. Instead, we find that axonal branch growth is regulated by dynamic, focal localisations of Neurexin and Neuroligin. These adhesion complexes provide stability for filopodia by a 'stick-and-grow' based mechanism wholly independent of synaptic activity.

Article and author information

Author details

  1. William D Constance

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Amrita Mukherjee

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Yvette E Fisher

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sinziana Pop

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Blanc

    Berlin Institute of Health, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4369-0254
  6. Yusuke Toyama

    Department of Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Darren W Williams

    Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    For correspondence
    darren.williams@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5917-4935

Funding

Biotechnology and Biological Sciences Research Council (BB/L022672/1)

  • William D Constance
  • Amrita Mukherjee
  • Yvette E Fisher
  • Sinziana Pop
  • Eric Blanc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: August 31, 2017
  2. Accepted: March 4, 2018
  3. Accepted Manuscript published: March 5, 2018 (version 1)
  4. Version of Record published: March 26, 2018 (version 2)

Copyright

© 2018, Constance et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,911
    Page views
  • 770
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William D Constance
  2. Amrita Mukherjee
  3. Yvette E Fisher
  4. Sinziana Pop
  5. Eric Blanc
  6. Yusuke Toyama
  7. Darren W Williams
(2018)
Neurexin and Neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity
eLife 7:e31659.
https://doi.org/10.7554/eLife.31659

Further reading

    1. Neuroscience
    Connon I Thomas, Melissa A Ryan ... Benjamin Scholl
    Research Article

    Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.