Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons

  1. Jegath C Athilingam  Is a corresponding author
  2. Roy Ben-Shalom
  3. Caroline M Keeshen
  4. Vikaas Sohal  Is a corresponding author
  5. Kevin Bender  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

The medial prefrontal cortex plays a key role in higher order cognitive functions like decision making and social cognition. These complex behaviors emerge from the coordinated firing of prefrontal neurons. Fast-spiking interneurons (FSIs) control the timing of excitatory neuron firing via somatic inhibition and generate gamma (30-100 Hz) oscillations. Therefore, factors that regulate how FSIs respond to gamma-frequency input could affect both prefrontal circuit activity and behavior. Here, we show that serotonin (5HT), which is known to regulate gamma power, acts via 5HT2A receptors to suppress an inward-rectifying potassium conductance in FSIs. This leads to depolarization, increased input resistance, enhanced spiking, and slowed decay of excitatory post-synaptic potentials (EPSPs). Notably, we found that slowed EPSP decay preferentially enhanced temporal summation and firing elicited by gamma frequency inputs. These findings show how changes in passive membrane properties can affect not only neuronal excitability but also the temporal filtering of synaptic inputs.

Article and author information

Author details

  1. Jegath C Athilingam

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    For correspondence
    jiggy.athilingam@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Roy Ben-Shalom

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Caroline M Keeshen

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vikaas Sohal

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    For correspondence
    vikaas.sohal@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2238-4186
  5. Kevin Bender

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    For correspondence
    kevin.bender@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7084-1532

Funding

National Institute of Mental Health (NRSA F31 MH111219-01)

  • Jegath C Athilingam

National Institutes of Health (U01 MH105948)

  • Vikaas Sohal

National Institutes of Health (R01 DA035913)

  • Kevin Bender

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AN170116, AN129822-02F) of the University of California, San Francisco. All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2017, Athilingam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,970
    views
  • 752
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jegath C Athilingam
  2. Roy Ben-Shalom
  3. Caroline M Keeshen
  4. Vikaas Sohal
  5. Kevin Bender
(2017)
Serotonin enhances excitability and gamma frequency temporal integration in mouse prefrontal fast-spiking interneurons
eLife 6:e31991.
https://doi.org/10.7554/eLife.31991

Share this article

https://doi.org/10.7554/eLife.31991

Further reading

    1. Neuroscience
    Merlin Monzel, Pitshaporn Leelaarporn ... Cornelia McCormick
    Research Article

    Aphantasia refers to reduced or absent visual imagery. While most of us can readily recall decade-old personal experiences (autobiographical memories, AM) with vivid mental images, there is a dearth of information about whether the loss of visual imagery in aphantasics affects their AM retrieval. The hippocampus is thought to be a crucial hub in a brain-wide network underlying AM. One important question is whether this network, especially the connectivity of the hippocampus, is altered in aphantasia. In the current study, we tested 14 congenital aphantasics and 16 demographically matched controls in an AM fMRI task to investigate how key brain regions (i.e. hippocampus and visual-perceptual cortices) interact with each other during AM re-experiencing. All participants were interviewed regarding their autobiographical memory to examine their episodic and semantic recall of specific events. Aphantasics reported more difficulties in recalling AM, were less confident about their memories, and described less internal and emotional details than controls. Neurally, aphantasics displayed decreased hippocampal and increased visual-perceptual cortex activation during AM retrieval compared to controls. In addition, controls showed strong negative functional connectivity between the hippocampus and the visual cortex during AM and resting-state functional connectivity between these two brain structures predicted better visualization skills. Our results indicate that visual mental imagery plays an important role in detail-rich vivid AM, and that this type of cognitive function is supported by the functional connection between the hippocampus and the visual-perceptual cortex.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Alfonso Aguilera, Marta Nieto
    Insight

    A tailored cocktail of genes can reprogram a subset of progenitors to no longer produce glial cells and instead develop into neurons involved in motor control.