PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling

  1. Estibaliz González-Fernández
  2. Hey-Kyeong Jeong
  3. Masahiro Fukaya
  4. Hyukmin Kim
  5. Rabia R Khawaja
  6. Isha N Srivastava
  7. Ari Waisman
  8. Young-Jin Son
  9. Shin H Kang  Is a corresponding author
  1. Temple University, United States
  2. Kitasato University School of Medicine, Japan
  3. Johannes Gutenberg University of Mainz, Germany

Abstract

Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3b, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3b activity. OPC-targeted PTEN-GSK3b inactivation may benefit facilitated OL regeneration and myelin repair.

Article and author information

Author details

  1. Estibaliz González-Fernández

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hey-Kyeong Jeong

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Masahiro Fukaya

    Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hyukmin Kim

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rabia R Khawaja

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Isha N Srivastava

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ari Waisman

    Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Young-Jin Son

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775
  9. Shin H Kang

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    For correspondence
    shin.kang@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3692-9802

Funding

National Institute of Neurological Disorders and Stroke (R01NS089586)

  • Shin H Kang

Ellison Medical Foundation (AG-NS-1101-13)

  • Shin H Kang

Shriners Hospitals for Children (85500-PHI-14)

  • Shin H Kang

Shriners Hospitals for Children (84298-PHI)

  • Hey-Kyeong Jeong

National Institute of Neurological Disorders and Stroke (R01NS07693)

  • Young-Jin Son

Shriners Hospitals for Children (86600)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in compliance with animal protocols (ACUP 4539 and 4568) approved by Institutional Animal Care and Committee (IACUC) at Temple University School of Medicine.

Copyright

© 2018, González-Fernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,525
    views
  • 456
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Estibaliz González-Fernández
  2. Hey-Kyeong Jeong
  3. Masahiro Fukaya
  4. Hyukmin Kim
  5. Rabia R Khawaja
  6. Isha N Srivastava
  7. Ari Waisman
  8. Young-Jin Son
  9. Shin H Kang
(2018)
PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling
eLife 7:e32021.
https://doi.org/10.7554/eLife.32021

Share this article

https://doi.org/10.7554/eLife.32021

Further reading

    1. Neuroscience
    Walter Senn, Dominik Dold ... Mihai A Petrovici
    Research Article

    One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.

    1. Cell Biology
    2. Neuroscience
    Josse Poppinga, Nolan J Barrett ... Jan RT van Weering
    Research Article

    Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.