PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling

  1. Estibaliz González-Fernández
  2. Hey-Kyeong Jeong
  3. Masahiro Fukaya
  4. Hyukmin Kim
  5. Rabia R Khawaja
  6. Isha N Srivastava
  7. Ari Waisman
  8. Young-Jin Son
  9. Shin H Kang  Is a corresponding author
  1. Temple University, United States
  2. Kitasato University School of Medicine, Japan
  3. Johannes Gutenberg University of Mainz, Germany

Abstract

Oligodendrocytes (OLs), the myelin-forming CNS glia, are highly vulnerable to cellular stresses, and a severe myelin loss underlies numerous CNS disorders. Expedited OL regeneration may prevent further axonal damage and facilitate functional CNS repair. Although adult OL progenitors (OPCs) are the primary players for OL regeneration, targetable OPC-specific intracellular signaling mechanisms for facilitated OL regeneration remain elusive. Here, we report that OPC-targeted PTEN inactivation in the mouse, in contrast to OL-specific manipulations, markedly promotes OL differentiation and regeneration in the mature CNS. Unexpectedly, an additional deletion of mTOR did not reverse the enhanced OL development from PTEN-deficient OPCs. Instead, ablation of GSK3b, another downstream signaling molecule that is negatively regulated by PTEN-Akt, enhanced OL development. Our results suggest that PTEN persistently suppresses OL development in an mTOR-independent manner, and at least in part, via controlling GSK3b activity. OPC-targeted PTEN-GSK3b inactivation may benefit facilitated OL regeneration and myelin repair.

Article and author information

Author details

  1. Estibaliz González-Fernández

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hey-Kyeong Jeong

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Masahiro Fukaya

    Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Hyukmin Kim

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rabia R Khawaja

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Isha N Srivastava

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ari Waisman

    Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Young-Jin Son

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5725-9775
  9. Shin H Kang

    Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, United States
    For correspondence
    shin.kang@temple.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3692-9802

Funding

National Institute of Neurological Disorders and Stroke (R01NS089586)

  • Shin H Kang

Ellison Medical Foundation (AG-NS-1101-13)

  • Shin H Kang

Shriners Hospitals for Children (85500-PHI-14)

  • Shin H Kang

Shriners Hospitals for Children (84298-PHI)

  • Hey-Kyeong Jeong

National Institute of Neurological Disorders and Stroke (R01NS07693)

  • Young-Jin Son

Shriners Hospitals for Children (86600)

  • Young-Jin Son

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in compliance with animal protocols (ACUP 4539 and 4568) approved by Institutional Animal Care and Committee (IACUC) at Temple University School of Medicine.

Copyright

© 2018, González-Fernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,562
    views
  • 460
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Estibaliz González-Fernández
  2. Hey-Kyeong Jeong
  3. Masahiro Fukaya
  4. Hyukmin Kim
  5. Rabia R Khawaja
  6. Isha N Srivastava
  7. Ari Waisman
  8. Young-Jin Son
  9. Shin H Kang
(2018)
PTEN negatively regulates the cell lineage progression from NG2+ glial progenitor to oligodendrocyte via mTOR-independent signaling
eLife 7:e32021.
https://doi.org/10.7554/eLife.32021

Share this article

https://doi.org/10.7554/eLife.32021

Further reading

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.