Histone deacetylase 7 mediates tissue-specific autoimmunity via control of innate effector function in invariant Natural Killer T-Cells

  1. Herbert G Kasler
  2. Intelly S Lee
  3. Hyung W Lim
  4. Eric Verdin  Is a corresponding author
  1. Gladstone Institute of Virology and Immunology, United States

Abstract

We report that Histone Deacetylase 7 (HDAC7) controls the thymic effector programming of Natural Killer T (NKT) cells, and that interference with this function contributes to tissue-specific autoimmunity. Gain of HDAC7 function in thymocytes blocks both negative selection and NKT development, and diverts Vα14/Jα18 TCR transgenic thymocytes into a Tconv-like lineage. Conversely, HDAC7 deletion promotes thymocyte apoptosis and causes expansion of innate-effector cells. Investigating the mechanisms involved, we found that HDAC7 binds PLZF and modulates PLZF-dependent transcription. Moreover, HDAC7 and many of its transcriptional targets are human risk loci for IBD and PSC, autoimmune diseases that strikingly resemble the disease we observe in HDAC7 gain-of-function in mice. Importantly, reconstitution of iNKT cells in these mice mitigated their disease, suggesting that the combined defects in negative selection and iNKT cells due to altered HDAC7 function can cause tissue-restricted autoimmunity, a finding that may explain the association between HDAC7 and hepatobiliary autoimmunity.

Data availability

All of the RNA-seq data associated with this manuscript have been deposited in the NCBI GEO archive, under accession number GSE105026. A full processed data matrix, with extensive annotation and aligned data from the other studies cited below is also provided as Supplementary File 1.

The following data sets were generated
The following previously published data sets were used
    1. Yang L
    (2009) Immunological Genome Project data Phase 1
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE15907).

Article and author information

Author details

  1. Herbert G Kasler

    Gladstone Institute of Virology and Immunology, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Intelly S Lee

    Gladstone Institute of Virology and Immunology, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Hyung W Lim

    Gladstone Institute of Virology and Immunology, San Francisco, United States
    Competing interests
    Hyung W Lim, is currently affiliated with Novartis Institutes for Biomedical Research (NIBR), but the research was conducted when he was at the Gladstone Institute/University of California. The author has no competing financial interests to declare.
  4. Eric Verdin

    Gladstone Institute of Virology and Immunology, San Francisco, United States
    For correspondence
    EVerdin@buckinstitute.org
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3703-3183

Funding

National Institutes of Health (AI117864)

  • Eric Verdin

Kurtzig and Mulholland Families

  • Eric Verdin

Gladstone Institutes

  • Eric Verdin

National Institutes of Health (DA041742)

  • Eric Verdin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were housed in specific pathogen-free barrier facilities at the Gladstone Institutes or the Buck institute. All animal care and animal experiments were carried out in compliance with NIH guidelines and IACUC-approved UCSF (AN110172) or Buck Institute (A10154) animal use protocols.

Copyright

© 2018, Kasler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,772
    views
  • 300
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Herbert G Kasler
  2. Intelly S Lee
  3. Hyung W Lim
  4. Eric Verdin
(2018)
Histone deacetylase 7 mediates tissue-specific autoimmunity via control of innate effector function in invariant Natural Killer T-Cells
eLife 7:e32109.
https://doi.org/10.7554/eLife.32109

Share this article

https://doi.org/10.7554/eLife.32109

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Immunology and Inflammation
    Jasmine Rowell, Ching-In Lau ... Tessa Crompton
    Research Article

    Here, we sequenced rearranged TCRβ and TCRα chain sequences in CD4+CD8+ double positive (DP), CD4+CD8- single positive (SP4) and CD4-CD8+ (SP8) thymocyte populations from the foetus and young adult mouse. We found that life-stage had a greater impact on TCRβ and TCRα gene segment usage than cell-type. Foetal repertoires showed bias towards 3’TRAV and 5’TRAJ rearrangements in all populations, whereas adult repertoires used more 5’TRAV gene segments, suggesting that progressive TCRα rearrangements occur less frequently in foetal DP cells. When we synchronised young adult DP thymocyte differentiation by hydrocortisone treatment the new recovering DP thymocyte population showed more foetal-like 3’TRAV and 5’TRAJ gene segment usage. In foetus we identified less influence of MHC-restriction on α-chain and β-chain combinatorial VxJ usage and CDR1xCDR2 (V region) usage in SP compared to adult, indicating weaker impact of MHC-restriction on the foetal TCR repertoire. The foetal TCRβ repertoire was less diverse, less evenly distributed, with fewer non-template insertions, and all foetal populations contained more clonotypic expansions than adult. The differences between the foetal and adult thymus TCR repertoires are consistent with the foetal thymus producing αβT-cells with properties and functions that are distinct from adult T-cells: their repertoire is less governed by MHC-restriction, with preference for particular gene segment usage, less diverse with more clonotypic expansions, and more closely encoded by genomic sequence.