Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons

  1. Pratibha Narayanan
  2. Meike Hütte
  3. Galina Kudryasheva
  4. Francisco J Taberner
  5. Stefan G Lechner
  6. Florian Rehfeldt
  7. David Gomez-Varela
  8. Manuela Schmidt  Is a corresponding author
  1. Max Planck Institute for Experimental Medicine, Germany
  2. University of Göttingen, Germany
  3. Heidelberg University, Germany

Abstract

Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Pratibha Narayanan

    Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Meike Hütte

    Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Galina Kudryasheva

    3rd Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Francisco J Taberner

    Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Stefan G Lechner

    Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Florian Rehfeldt

    3rd Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David Gomez-Varela

    Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Manuela Schmidt

    Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
    For correspondence
    mschmidt@em.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1972-3519

Funding

Deutsche Forschungsgemeinschaft (SCHM 2533/2-1)

  • Manuela Schmidt

Max-Planck-Gesellschaft (Open-access funding)

  • Meike Hütte
  • David Gomez-Varela
  • Manuela Schmidt

Göttinger Graduiertenschule für Neurowissenschaften, Biophysik und Molekulare Biowissenschaften (PhD fellowship)

  • Pratibha Narayanan
  • Meike Hütte

Deutsche Forschungsgemeinschaft (CRC889 Project A9)

  • Manuela Schmidt

Deutsche Forschungsgemeinschaft (GO 2481/2-1)

  • David Gomez-Varela

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments involving primary tissue isolated from mice were carried out in strict accordance with the recommendations of the institutional animal care and use committee (IACUC) of the Max Planck Institute of Experimental Medicine, Goettingen.

Copyright

© 2018, Narayanan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,291
    views
  • 500
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pratibha Narayanan
  2. Meike Hütte
  3. Galina Kudryasheva
  4. Francisco J Taberner
  5. Stefan G Lechner
  6. Florian Rehfeldt
  7. David Gomez-Varela
  8. Manuela Schmidt
(2018)
Myotubularin related protein-2 and its phospholipid substrate PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons
eLife 7:e32346.
https://doi.org/10.7554/eLife.32346

Share this article

https://doi.org/10.7554/eLife.32346

Further reading

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.