Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses

  1. Bernard Bloem
  2. Rafiq Huda
  3. Mriganka Sur
  4. Ann M Graybiel  Is a corresponding author
  1. Massachusetts Institute of Technology, United States

Abstract

Despite the discovery of striosomes several decades ago, technical hurdles have hampered the study of the functions of these striatal compartments. Here we used 2-photon calcium imaging in neuronal birthdate-labeled Mash1-CreER;Ai14 mice to image simultaneously the activity of striosomal and matrix neurons as mice performed an auditory conditioning task. With this method, we were able to identify circumscribed zones of tdTomato-labeled neuropil that correspond to striosomes as verified immunohistochemically. Neurons in both striosomes and matrix responded to reward-predicting cues and were active during or after consummatory licking. However, we found quantitative differences in response strength: striosomal neurons fired more to reward-predicting cues and encoded more information about expected outcome as mice learned the task, whereas matrix neurons were more strongly modulated by recent reward history. These findings open the possibility of harnessing in vivo imaging to determine the contributions of striosomes and matrix to striatal circuit function.

Article and author information

Author details

  1. Bernard Bloem

    McGovern Institute for Brain Reseach, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rafiq Huda

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mriganka Sur

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ann M Graybiel

    McGovern Institute for Brain Reseach, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    graybiel@MIT.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9197-7711

Funding

Simons Foundation (306140)

  • Ann M Graybiel

National Science Foundation (EF1451125)

  • Mriganka Sur

Simons Foundation Autism Research Initiative

  • Mriganka Sur

National Eye Institute (F32 EY024857)

  • Rafiq Huda

National Institute of Mental Health (K99 MH112855)

  • Rafiq Huda

Nancy Lurie Marks Family Foundation

  • Ann M Graybiel

William N. & Bernice E. Bumpus foundation (RRDA pilot 2013.1)

  • Ann M Graybiel

William N. & Bernice E. Bumpus foundation

  • Bernard Bloem

National Institute of Mental Health (R01 MH060379)

  • Ann M Graybiel

Saks Kavanaugh Foundation

  • Ann M Graybiel

Bachmann-Strauss Dystonia and Parkinson Foundation

  • Ann M Graybiel

Netherlands Organization for Scientific Research - Rubicon

  • Bernard Bloem

National Institute of Neurological Disorders and Stroke (U01 NS090473)

  • Mriganka Sur

National Eye Institute (R01 EY007023)

  • Mriganka Sur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, NIDA, United States

Ethics

Animal experimentation: All experiments were conducted in accordance with the National Institute of Health guidelines and with the approval of the Committee on Animal Care at the Massachusetts Institute of Technology (protocol #: 1114-122-17).

Version history

  1. Received: September 28, 2017
  2. Accepted: December 16, 2017
  3. Accepted Manuscript published: December 18, 2017 (version 1)
  4. Version of Record published: January 11, 2018 (version 2)

Copyright

© 2017, Bloem et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,497
    views
  • 674
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bernard Bloem
  2. Rafiq Huda
  3. Mriganka Sur
  4. Ann M Graybiel
(2017)
Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses
eLife 6:e32353.
https://doi.org/10.7554/eLife.32353

Share this article

https://doi.org/10.7554/eLife.32353

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.