Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses

  1. Bernard Bloem
  2. Rafiq Huda
  3. Mriganka Sur
  4. Ann M Graybiel  Is a corresponding author
  1. Massachusetts Institute of Technology, United States

Abstract

Despite the discovery of striosomes several decades ago, technical hurdles have hampered the study of the functions of these striatal compartments. Here we used 2-photon calcium imaging in neuronal birthdate-labeled Mash1-CreER;Ai14 mice to image simultaneously the activity of striosomal and matrix neurons as mice performed an auditory conditioning task. With this method, we were able to identify circumscribed zones of tdTomato-labeled neuropil that correspond to striosomes as verified immunohistochemically. Neurons in both striosomes and matrix responded to reward-predicting cues and were active during or after consummatory licking. However, we found quantitative differences in response strength: striosomal neurons fired more to reward-predicting cues and encoded more information about expected outcome as mice learned the task, whereas matrix neurons were more strongly modulated by recent reward history. These findings open the possibility of harnessing in vivo imaging to determine the contributions of striosomes and matrix to striatal circuit function.

Article and author information

Author details

  1. Bernard Bloem

    McGovern Institute for Brain Reseach, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rafiq Huda

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mriganka Sur

    Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ann M Graybiel

    McGovern Institute for Brain Reseach, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    graybiel@MIT.EDU
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9197-7711

Funding

Simons Foundation (306140)

  • Ann M Graybiel

National Science Foundation (EF1451125)

  • Mriganka Sur

Simons Foundation Autism Research Initiative

  • Mriganka Sur

National Eye Institute (F32 EY024857)

  • Rafiq Huda

National Institute of Mental Health (K99 MH112855)

  • Rafiq Huda

Nancy Lurie Marks Family Foundation

  • Ann M Graybiel

William N. & Bernice E. Bumpus foundation (RRDA pilot 2013.1)

  • Ann M Graybiel

William N. & Bernice E. Bumpus foundation

  • Bernard Bloem

National Institute of Mental Health (R01 MH060379)

  • Ann M Graybiel

Saks Kavanaugh Foundation

  • Ann M Graybiel

Bachmann-Strauss Dystonia and Parkinson Foundation

  • Ann M Graybiel

Netherlands Organization for Scientific Research - Rubicon

  • Bernard Bloem

National Institute of Neurological Disorders and Stroke (U01 NS090473)

  • Mriganka Sur

National Eye Institute (R01 EY007023)

  • Mriganka Sur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, NIDA, United States

Ethics

Animal experimentation: All experiments were conducted in accordance with the National Institute of Health guidelines and with the approval of the Committee on Animal Care at the Massachusetts Institute of Technology (protocol #: 1114-122-17).

Version history

  1. Received: September 28, 2017
  2. Accepted: December 16, 2017
  3. Accepted Manuscript published: December 18, 2017 (version 1)
  4. Version of Record published: January 11, 2018 (version 2)

Copyright

© 2017, Bloem et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,428
    views
  • 669
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bernard Bloem
  2. Rafiq Huda
  3. Mriganka Sur
  4. Ann M Graybiel
(2017)
Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses
eLife 6:e32353.
https://doi.org/10.7554/eLife.32353

Share this article

https://doi.org/10.7554/eLife.32353

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.