1. Neuroscience
Download icon

Embryonic and postnatal neurogenesis produce functionally distinct subclasses of dopaminergic neuron

  1. Elisa Galliano  Is a corresponding author
  2. Eleonora Franzoni
  3. Marine Breton
  4. Annisa N Chand
  5. Darren J Byrne
  6. Venkatesh N Murthy
  7. Matthew Grubb  Is a corresponding author
  1. King's College London, United Kingdom
  2. Harvard University, United States
Research Article
  • Cited 16
  • Views 3,926
  • Annotations
Cite this article as: eLife 2018;7:e32373 doi: 10.7554/eLife.32373

Abstract

Most neurogenesis in the mammalian brain is completed embryonically, but in certain areas the production of neurons continues throughout postnatal life. The functional properties of mature postnatally-generated neurons often match those of their embryonically-produced counterparts. However, we show here that in the olfactory bulb (OB), embryonic and postnatal neurogenesis produce functionally distinct subpopulations of dopaminergic (DA) neurons. We define two subclasses of OB DA neuron by the presence or absence of a key subcellular specialisation: the axon initial segment (AIS). Large AIS-positive axon-bearing DA neurons are exclusively produced during early embryonic stages, leaving small anaxonic AIS-negative cells as the only DA subtype generated via adult neurogenesis. These populations are functionally distinct: large DA cells are more excitable, yet display weaker and - for certain long-latency or inhibitory events - more broadly-tuned responses to odorant stimuli. Embryonic and postnatal neurogenesis can therefore generate distinct neuronal subclasses, placing important constraints on the functional roles of adult-born neurons in sensory processing.

Article and author information

Author details

  1. Elisa Galliano

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
    For correspondence
    elisa.galliano@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6941-766X
  2. Eleonora Franzoni

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Marine Breton

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Annisa N Chand

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Darren J Byrne

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Venkatesh N Murthy

    Center for Brain Science, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2443-4252
  7. Matthew Grubb

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
    For correspondence
    matthew.grubb@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2673-274X

Funding

Wellcome (103044)

  • Elisa Galliano

National Institutes of Health (DC013329)

  • Venkatesh N Murthy

European Research Council (725729 FUNCOPLAN)

  • Matthew Grubb

Wellcome (88301)

  • Matthew Grubb

Medical Research Council (MR/M501645/1)

  • Darren J Byrne

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed under the auspices of UK Home Office personal and project licences held by the authors (Project Licenses: 70/7246 and 70/8906), or were within institutional (Harvard University Institutional Animal Care and Use Committee; Animal Protocol 29/20)) and USA national guidelines.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Publication history

  1. Received: September 28, 2017
  2. Accepted: April 4, 2018
  3. Accepted Manuscript published: April 20, 2018 (version 1)
  4. Version of Record published: May 4, 2018 (version 2)

Copyright

© 2018, Galliano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,926
    Page views
  • 556
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Maria Schörnig et al.
    Research Article

    We generated induced excitatory neurons (iNeurons, iNs) from chimpanzee, bonobo and human stem cells by expressing the transcription factor neurogenin‑2 (NGN2). Single cell RNA sequencing (scRNAseq) showed that genes involved in dendrite and synapse development are expressed earlier during iNs maturation in the chimpanzee and bonobo than the human cells. In accordance, during the first two weeks of differentiation, chimpanzee and bonobo iNs showed repetitive action potentials and more spontaneous excitatory activity than human iNs, and extended neurites of higher total length. However, the axons of human iNs were slightly longer at 5 weeks of differentiation. The timing of the establishment of neuronal polarity did not differ between the species. Chimpanzee, bonobo and human neurites eventually reached the same level of structural complexity. Thus, human iNs develop slower than chimpanzee and bonobo iNs and this difference in timing likely depends on functions downstream of NGN2.

    1. Neuroscience
    Magda Dubois et al.
    Research Article Updated

    An exploration-exploitation trade-off, the arbitration between sampling a lesser-known against a known rich option, is thought to be solved using computationally demanding exploration algorithms. Given known limitations in human cognitive resources, we hypothesised the presence of additional cheaper strategies. We examined for such heuristics in choice behaviour where we show this involves a value-free random exploration, that ignores all prior knowledge, and a novelty exploration that targets novel options alone. In a double-blind, placebo-controlled drug study, assessing contributions of dopamine (400 mg amisulpride) and noradrenaline (40 mg propranolol), we show that value-free random exploration is attenuated under the influence of propranolol, but not under amisulpride. Our findings demonstrate that humans deploy distinct computationally cheap exploration strategies and that value-free random exploration is under noradrenergic control.