1. Computational and Systems Biology
Download icon

The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

  1. Athma A Pai
  2. Telmo Henriques
  3. Kayla McCue
  4. Adam Burkholder
  5. Karen Adelman
  6. Christopher B Burge  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. National Institute for Environmental Health Sciences, United States
  3. Harvard Medical School, United States
Research Article
  • Cited 18
  • Views 4,413
  • Annotations
Cite this article as: eLife 2017;6:e32537 doi: 10.7554/eLife.32537

Abstract

Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning ('intron definition') or exon-spanning ('exon definition') pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60-70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. Surprisingly, we observed low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance rates of splicing.

Article and author information

Author details

  1. Athma A Pai

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7995-9948
  2. Telmo Henriques

    Epigenetics and Stem Cell Biology Laboratory, National Institute for Environmental Health Sciences, Durham, United States
    Competing interests
    No competing interests declared.
  3. Kayla McCue

    Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Adam Burkholder

    Center for Integrative Bioinformatics, National Institute for Environmental Health Sciences, Durham, United States
    Competing interests
    No competing interests declared.
  5. Karen Adelman

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    Karen Adelman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5364-334X
  6. Christopher B Burge

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    cburge@mit.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9047-5648

Funding

National Institutes of Health (Z01-ES101987)

  • Telmo Henriques
  • Adam Burkholder
  • Karen Adelman

National Institutes of Health (R01-GM085319)

  • Athma A Pai
  • Christopher B Burge

Jane Coffin Childs Memorial Fund for Medical Research

  • Athma A Pai

U.S. Department of Energy (FG02-97ER25308)

  • Kayla McCue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Publication history

  1. Received: October 5, 2017
  2. Accepted: December 22, 2017
  3. Accepted Manuscript published: December 27, 2017 (version 1)
  4. Version of Record published: January 10, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,413
    Page views
  • 637
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Xiaochuan Zhao et al.
    Research Article Updated

    The DNA-binding protein H-NS is a pleiotropic gene regulator in gram-negative bacteria. Through its capacity to sense temperature and other environmental factors, H-NS allows pathogens like Salmonella to adapt their gene expression to their presence inside or outside warm-blooded hosts. To investigate how this sensing mechanism may have evolved to fit different bacterial lifestyles, we compared H-NS orthologs from bacteria that infect humans, plants, and insects, and from bacteria that live on a deep-sea hypothermal vent. The combination of biophysical characterization, high-resolution proton-less nuclear magnetic resonance spectroscopy, and molecular simulations revealed, at an atomistic level, how the same general mechanism was adapted to specific habitats and lifestyles. In particular, we demonstrate how environment-sensing characteristics arise from specifically positioned intra- or intermolecular electrostatic interactions. Our integrative approach clarified the exact modus operandi for H-NS-mediated environmental sensing and suggested that this sensing mechanism resulted from the exaptation of an ancestral protein feature.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Reza K Hammond et al.
    Research Article Updated

    To uncover novel significant association signals (p<5×10−8), genome-wide association studies (GWAS) requires increasingly larger sample sizes to overcome statistical correction for multiple testing. As an alternative, we aimed to identify associations among suggestive signals (5 × 10−8≤p<5×10−4) in increasingly powered GWAS efforts using chromatin accessibility and direct contact with gene promoters as biological constraints. We conducted retrospective analyses of three GIANT BMI GWAS efforts using ATAC-seq and promoter-focused Capture C data from human adipocytes and embryonic stem cell (ESC)-derived hypothalamic-like neurons. This approach, with its extremely low false-positive rate, identified 15 loci at p<5×10−5 in the 2010 GWAS, of which 13 achieved genome-wide significance by 2018, including at NAV1, MTIF3, and ADCY3. Eighty percent of constrained 2015 loci achieved genome-wide significance in 2018. We observed similar results in waist-to-hip ratio analyses. In conclusion, biological constraints on sub-significant GWAS signals can reveal potentially true-positive loci for further investigation in existing data sets without increasing sample size.