The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture

  1. Athma A Pai
  2. Telmo Henriques
  3. Kayla McCue
  4. Adam Burkholder
  5. Karen Adelman
  6. Christopher B Burge  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. National Institute for Environmental Health Sciences, United States
  3. Harvard Medical School, United States

Abstract

Production of most eukaryotic mRNAs requires splicing of introns from pre-mRNA. The splicing reaction requires definition of splice sites, which are initially recognized in either intron-spanning ('intron definition') or exon-spanning ('exon definition') pairs. To understand how exon and intron length and splice site recognition mode impact splicing, we measured splicing rates genome-wide in Drosophila, using metabolic labeling/RNA sequencing and new mathematical models to estimate rates. We found that the modal intron length range of 60-70 nt represents a local maximum of splicing rates, but that much longer exon-defined introns are spliced even faster and more accurately. Surprisingly, we observed low variation in splicing rates across introns in the same gene, suggesting the presence of gene-level influences, and we identified multiple gene level variables associated with splicing rate. Together our data suggest that developmental and stress response genes may have preferentially evolved exon definition in order to enhance rates of splicing.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Athma A Pai

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7995-9948
  2. Telmo Henriques

    Epigenetics and Stem Cell Biology Laboratory, National Institute for Environmental Health Sciences, Durham, United States
    Competing interests
    No competing interests declared.
  3. Kayla McCue

    Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Adam Burkholder

    Center for Integrative Bioinformatics, National Institute for Environmental Health Sciences, Durham, United States
    Competing interests
    No competing interests declared.
  5. Karen Adelman

    Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    Karen Adelman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5364-334X
  6. Christopher B Burge

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    cburge@mit.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9047-5648

Funding

National Institutes of Health (Z01-ES101987)

  • Telmo Henriques
  • Adam Burkholder
  • Karen Adelman

National Institutes of Health (R01-GM085319)

  • Athma A Pai
  • Christopher B Burge

Jane Coffin Childs Memorial Fund for Medical Research

  • Athma A Pai

U.S. Department of Energy (FG02-97ER25308)

  • Kayla McCue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Received: October 5, 2017
  2. Accepted: December 22, 2017
  3. Accepted Manuscript published: December 27, 2017 (version 1)
  4. Version of Record published: January 10, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,915
    Page views
  • 808
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Athma A Pai
  2. Telmo Henriques
  3. Kayla McCue
  4. Adam Burkholder
  5. Karen Adelman
  6. Christopher B Burge
(2017)
The kinetics of pre-mRNA splicing in the Drosophila genome and the influence of gene architecture
eLife 6:e32537.
https://doi.org/10.7554/eLife.32537

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    David J Torres, Paulus Mrass ... Judy L Cannon
    Research Article Updated

    T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.

    1. Computational and Systems Biology
    Ricardo Omar Ramirez Flores, Jan David Lanzer ... Julio Saez-Rodriguez
    Research Article

    Biomedical single-cell atlases describe disease at the cellular level. However, analysis of this data commonly focuses on cell-type centric pairwise cross-condition comparisons, disregarding the multicellular nature of disease processes. Here we propose multicellular factor analysis for the unsupervised analysis of samples from cross-condition single-cell atlases and the identification of multicellular programs associated with disease. Our strategy, which repurposes group factor analysis as implemented in multi-omics factor analysis, incorporates the variation of patient samples across cell-types or other tissue-centric features, such as cell compositions or spatial relationships, and enables the joint analysis of multiple patient cohorts, facilitating the integration of atlases. We applied our framework to a collection of acute and chronic human heart failure atlases and described multicellular processes of cardiac remodeling, independent to cellular compositions and their local organization, that were conserved in independent spatial and bulk transcriptomics datasets. In sum, our framework serves as an exploratory tool for unsupervised analysis of cross-condition single-cell atlases and allows for the integration of the measurements of patient cohorts across distinct data modalities.