Comprehensive machine learning analysis of Hydra behavior reveals a stable behavioral repertoire

  1. Shuting Han  Is a corresponding author
  2. Ekaterina Taralova
  3. Christophe Dupre
  4. Rafael Yuste  Is a corresponding author
  1. Columbia University, United States

Abstract

Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify behavior. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, the limitation of human vision and the slow speed of annotating behavioral data. Here we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning approaches. We imaged freely behaving Hydra, extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control which could have been already present in the earliest nervous systems.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Shuting Han

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    sh3276@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Ekaterina Taralova

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christophe Dupre

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5929-8492
  4. Rafael Yuste

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    rmy5@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-497X

Funding

Defense Advanced Research Projects Agency (HR0011-17-C-0026)

  • Rafael Yuste

Howard Hughes Medical Institute (Howard Hughes Medical Institute International Student Research Fellowship)

  • Shuting Han

Grass Foundation (Grass Fellowship)

  • Christophe Dupre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,435
    views
  • 903
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuting Han
  2. Ekaterina Taralova
  3. Christophe Dupre
  4. Rafael Yuste
(2018)
Comprehensive machine learning analysis of Hydra behavior reveals a stable behavioral repertoire
eLife 7:e32605.
https://doi.org/10.7554/eLife.32605

Share this article

https://doi.org/10.7554/eLife.32605

Further reading

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.