Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions

Abstract

The simultaneously imaging and manipulating of neural activity in three-dimensions could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to manipulate neural activity in mouse neocortex in vivo in 3D, while maintaining cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in cortical layer 2/3 from mouse visual cortex. We validate the usefulness of the microscope by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli. Our all-optical method could be used as a general platform to read and write activity of neural circuits.

Article and author information

Author details

  1. Weijian Yang

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    wejyang@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0941-3496
  2. Luis Carrillo-Reid

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuki Bando

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Darcy S Peterka

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Darcy S Peterka, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-5820
  5. Rafael Yuste

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    rmy5@columbia.edu
    Competing interests
    Rafael Yuste, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-497X

Funding

National Eye Institute (DP1EY024503)

  • Rafael Yuste

National Institute of Mental Health (R44MH109187)

  • Darcy S Peterka

Defense Advanced Research Projects Agency (N66001-15-C-4032)

  • Rafael Yuste

National Institute of Mental Health (R01MH100561)

  • Rafael Yuste

National Eye Institute (R21EY027592)

  • Darcy S Peterka

National Institute of Mental Health (R01MH101218)

  • Rafael Yuste

Defense Advanced Research Projects Agency (W91NF-14-1-0269)

  • Rafael Yuste

Army Research Laboratory (W911NF-12-1-0594)

  • Rafael Yuste

Army Research Office (W911NF-12-1-0594)

  • Rafael Yuste

Burroughs Wellcome Fund (1015761)

  • Weijian Yang

Uehara Memorial Foundation

  • Yuki Bando

National Eye Institute (R01EY011787)

  • Rafael Yuste

National Institute of Mental Health (R41MH100895)

  • Rafael Yuste

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Columbia University [protocol ID: AC-AAAM5100, AC-AAAM7951].

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Version history

  1. Received: October 10, 2017
  2. Accepted: February 5, 2018
  3. Accepted Manuscript published: February 7, 2018 (version 1)
  4. Version of Record published: March 1, 2018 (version 2)

Copyright

© 2018, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 18,669
    Page views
  • 2,505
    Downloads
  • 135
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weijian Yang
  2. Luis Carrillo-Reid
  3. Yuki Bando
  4. Darcy S Peterka
  5. Rafael Yuste
(2018)
Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions
eLife 7:e32671.
https://doi.org/10.7554/eLife.32671

Further reading

    1. Neuroscience
    Connon I Thomas, Melissa A Ryan ... Benjamin Scholl
    Research Article

    Postsynaptic mitochondria are critical for the development, plasticity, and maintenance of synaptic inputs. However, their relationship to synaptic structure and functional activity is unknown. We examined a correlative dataset from ferret visual cortex with in vivo two-photon calcium imaging of dendritic spines during visual stimulation and electron microscopy reconstructions of spine ultrastructure, investigating mitochondrial abundance near functionally and structurally characterized spines. Surprisingly, we found no correlation to structural measures of synaptic strength. Instead, we found that mitochondria are positioned near spines with orientation preferences that are dissimilar to the somatic preference. Additionally, we found that mitochondria are positioned near groups of spines with heterogeneous orientation preferences. For a subset of spines with a mitochondrion in the head or neck, synapses were larger and exhibited greater selectivity to visual stimuli than those without a mitochondrion. Our data suggest mitochondria are not necessarily positioned to support the energy needs of strong spines, but rather support the structurally and functionally diverse inputs innervating the basal dendrites of cortical neurons.

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.