1. Neuroscience
Download icon

Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions

  1. Weijian Yang  Is a corresponding author
  2. Luis Carrillo-Reid
  3. Yuki Bando
  4. Darcy S Peterka
  5. Rafael Yuste  Is a corresponding author
  1. Columbia University, United States
Tools and Resources
  • Cited 62
  • Views 13,478
  • Annotations
Cite this article as: eLife 2018;7:e32671 doi: 10.7554/eLife.32671

Abstract

The simultaneously imaging and manipulating of neural activity in three-dimensions could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to manipulate neural activity in mouse neocortex in vivo in 3D, while maintaining cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in cortical layer 2/3 from mouse visual cortex. We validate the usefulness of the microscope by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli. Our all-optical method could be used as a general platform to read and write activity of neural circuits.

Article and author information

Author details

  1. Weijian Yang

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    wejyang@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0941-3496
  2. Luis Carrillo-Reid

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuki Bando

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Darcy S Peterka

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Darcy S Peterka, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-5820
  5. Rafael Yuste

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    rmy5@columbia.edu
    Competing interests
    Rafael Yuste, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-497X

Funding

National Eye Institute (DP1EY024503)

  • Rafael Yuste

National Institute of Mental Health (R44MH109187)

  • Darcy S Peterka

Defense Advanced Research Projects Agency (N66001-15-C-4032)

  • Rafael Yuste

National Institute of Mental Health (R01MH100561)

  • Rafael Yuste

National Eye Institute (R21EY027592)

  • Darcy S Peterka

National Institute of Mental Health (R01MH101218)

  • Rafael Yuste

Defense Advanced Research Projects Agency (W91NF-14-1-0269)

  • Rafael Yuste

Army Research Laboratory (W911NF-12-1-0594)

  • Rafael Yuste

Army Research Office (W911NF-12-1-0594)

  • Rafael Yuste

Burroughs Wellcome Fund (1015761)

  • Weijian Yang

Uehara Memorial Foundation

  • Yuki Bando

National Eye Institute (R01EY011787)

  • Rafael Yuste

National Institute of Mental Health (R41MH100895)

  • Rafael Yuste

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Columbia University [protocol ID: AC-AAAM5100, AC-AAAM7951].

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Publication history

  1. Received: October 10, 2017
  2. Accepted: February 5, 2018
  3. Accepted Manuscript published: February 7, 2018 (version 1)
  4. Version of Record published: March 1, 2018 (version 2)

Copyright

© 2018, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,478
    Page views
  • 2,005
    Downloads
  • 62
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Joshua B Burt et al.
    Research Advance

    Psychoactive drugs can transiently perturb brain physiology while preserving brain structure. The role of physiological state in shaping neural function can therefore be investigated through neuroimaging of pharmacologically induced effects. Previously, using pharmacological neuroimaging, we found that neural and experiential effects of lysergic acid diethylamide (LSD) are attributable to agonism of the serotonin-2A receptor (Preller et al., 2018). Here, we integrate brain-wide transcriptomics with biophysically based circuit modeling to simulate acute neuromodulatory effects of LSD on human cortical large-scale spatiotemporal dynamics. Our model captures the inter-areal topography of LSD-induced changes in cortical blood oxygen level-dependent (BOLD) functional connectivity. These findings suggest that serotonin-2A-mediated modulation of pyramidal-neuronal gain is a circuit mechanism through which LSD alters cortical functional topography. Individual-subject model fitting captures patterns of individual neural differences in pharmacological response related to altered states of consciousness. This work establishes a framework for linking molecular-level manipulations to systems-level functional alterations, with implications for precision medicine.

    1. Neuroscience
    Chin-Hsuan Chia et al.
    Short Report

    Sleep is essential in maintaining physiological homeostasis in the brain. While the underlying mechanism is not fully understood, a 'synaptic homeostasis' theory has been proposed that synapses continue to strengthen during awake, and undergo downscaling during sleep. This theory predicts that brain excitability increases with sleepiness. Here, we collected transcranial magnetic stimulation (TMS) measurements in 38 subjects in a 34-hour program, and decoded the relationship between cortical excitability and self-report sleepiness using advanced statistical methods. By utilizing a combination of partial least squares (PLS) regression and mixed-effect models, we identified a robust pattern of excitability changes, which can quantitatively predict the degree of sleepiness. Moreover, we found that synaptic strengthen occurred in both excitatory and inhibitory connections after sleep deprivation. In sum, our study provides supportive evidence for the synaptic homeostasis theory in human sleep and clarifies the process of synaptic strength modulation during sleepiness.