1. Neuroscience
Download icon

Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions

  1. Weijian Yang  Is a corresponding author
  2. Luis Carrillo-Reid
  3. Yuki Bando
  4. Darcy S Peterka
  5. Rafael Yuste  Is a corresponding author
  1. Columbia University, United States
Tools and Resources
  • Cited 57
  • Views 12,913
  • Annotations
Cite this article as: eLife 2018;7:e32671 doi: 10.7554/eLife.32671

Abstract

The simultaneously imaging and manipulating of neural activity in three-dimensions could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to manipulate neural activity in mouse neocortex in vivo in 3D, while maintaining cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in cortical layer 2/3 from mouse visual cortex. We validate the usefulness of the microscope by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli. Our all-optical method could be used as a general platform to read and write activity of neural circuits.

Article and author information

Author details

  1. Weijian Yang

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    wejyang@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0941-3496
  2. Luis Carrillo-Reid

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuki Bando

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Darcy S Peterka

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Darcy S Peterka, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-5820
  5. Rafael Yuste

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    rmy5@columbia.edu
    Competing interests
    Rafael Yuste, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-497X

Funding

National Eye Institute (DP1EY024503)

  • Rafael Yuste

National Institute of Mental Health (R44MH109187)

  • Darcy S Peterka

Defense Advanced Research Projects Agency (N66001-15-C-4032)

  • Rafael Yuste

National Institute of Mental Health (R01MH100561)

  • Rafael Yuste

National Eye Institute (R21EY027592)

  • Darcy S Peterka

National Institute of Mental Health (R01MH101218)

  • Rafael Yuste

Defense Advanced Research Projects Agency (W91NF-14-1-0269)

  • Rafael Yuste

Army Research Laboratory (W911NF-12-1-0594)

  • Rafael Yuste

Army Research Office (W911NF-12-1-0594)

  • Rafael Yuste

Burroughs Wellcome Fund (1015761)

  • Weijian Yang

Uehara Memorial Foundation

  • Yuki Bando

National Eye Institute (R01EY011787)

  • Rafael Yuste

National Institute of Mental Health (R41MH100895)

  • Rafael Yuste

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Columbia University [protocol ID: AC-AAAM5100, AC-AAAM7951].

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Publication history

  1. Received: October 10, 2017
  2. Accepted: February 5, 2018
  3. Accepted Manuscript published: February 7, 2018 (version 1)
  4. Version of Record published: March 1, 2018 (version 2)

Copyright

© 2018, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,913
    Page views
  • 1,976
    Downloads
  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Neuroscience
    George A Mashour et al.
    Research Article

    Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for three hours and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.

    1. Neuroscience
    Giada Dirupo et al.
    Research Article Updated

    Healthcare providers often underestimate patients’ pain, sometimes even when aware of their reports. This could be the effect of experience reducing sensitivity to others pain, or distrust toward patients’ self-evaluations. Across multiple experiments (375 participants), we tested whether senior medical students differed from younger colleagues and lay controls in the way they assess people’s pain and take into consideration their feedback. We found that medical training affected the sensitivity to pain faces, an effect shown by the lower ratings and highlighted by a decrease in neural response of the insula and cingulate cortex. Instead, distrust toward the expressions’ authenticity affected the processing of feedbacks, by decreasing activity in the ventral striatum whenever patients’ self-reports matched participants’ evaluations, and by promoting strong reliance on the opinion of other doctors. Overall, our study underscores the multiple processes which might influence the evaluation of others’ pain at the early stages of medical career.