Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions

  1. Weijian Yang  Is a corresponding author
  2. Luis Carrillo-Reid
  3. Yuki Bando
  4. Darcy S Peterka
  5. Rafael Yuste  Is a corresponding author
  1. Columbia University, United States

Abstract

The simultaneously imaging and manipulating of neural activity in three-dimensions could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to manipulate neural activity in mouse neocortex in vivo in 3D, while maintaining cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in cortical layer 2/3 from mouse visual cortex. We validate the usefulness of the microscope by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli. Our all-optical method could be used as a general platform to read and write activity of neural circuits.

Article and author information

Author details

  1. Weijian Yang

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    wejyang@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0941-3496
  2. Luis Carrillo-Reid

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuki Bando

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Darcy S Peterka

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Darcy S Peterka, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-5820
  5. Rafael Yuste

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    rmy5@columbia.edu
    Competing interests
    Rafael Yuste, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-497X

Funding

National Eye Institute (DP1EY024503)

  • Rafael Yuste

National Institute of Mental Health (R44MH109187)

  • Darcy S Peterka

Defense Advanced Research Projects Agency (N66001-15-C-4032)

  • Rafael Yuste

National Institute of Mental Health (R01MH100561)

  • Rafael Yuste

National Eye Institute (R21EY027592)

  • Darcy S Peterka

National Institute of Mental Health (R01MH101218)

  • Rafael Yuste

Defense Advanced Research Projects Agency (W91NF-14-1-0269)

  • Rafael Yuste

Army Research Laboratory (W911NF-12-1-0594)

  • Rafael Yuste

Army Research Office (W911NF-12-1-0594)

  • Rafael Yuste

Burroughs Wellcome Fund (1015761)

  • Weijian Yang

Uehara Memorial Foundation

  • Yuki Bando

National Eye Institute (R01EY011787)

  • Rafael Yuste

National Institute of Mental Health (R41MH100895)

  • Rafael Yuste

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Columbia University [protocol ID: AC-AAAM5100, AC-AAAM7951].

Reviewing Editor

  1. Karel Svoboda, Janelia Research Campus, Howard Hughes Medical Institute, United States

Publication history

  1. Received: October 10, 2017
  2. Accepted: February 5, 2018
  3. Accepted Manuscript published: February 7, 2018 (version 1)
  4. Version of Record published: March 1, 2018 (version 2)

Copyright

© 2018, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 16,694
    Page views
  • 2,361
    Downloads
  • 112
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weijian Yang
  2. Luis Carrillo-Reid
  3. Yuki Bando
  4. Darcy S Peterka
  5. Rafael Yuste
(2018)
Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions
eLife 7:e32671.
https://doi.org/10.7554/eLife.32671
  1. Further reading

Further reading

    1. Neuroscience
    Andrew P Davison, Shailesh Appukuttan
    Insight

    Artificial neural networks could pave the way for efficiently simulating large-scale models of neuronal networks in the nervous system.

    1. Neuroscience
    Jonathan Nicholas, Nathaniel D Daw, Daphna Shohamy
    Research Article

    A key question in decision making is how humans arbitrate between competing learning and memory systems to maximize reward. We address this question by probing the balance between the effects, on choice, of incremental trial-and-error learning versus episodic memories of individual events. Although a rich literature has studied incremental learning in isolation, the role of episodic memory in decision making has only recently drawn focus, and little research disentangles their separate contributions. We hypothesized that the brain arbitrates rationally between these two systems, relying on each in circumstances to which it is most suited, as indicated by uncertainty. We tested this hypothesis by directly contrasting contributions of episodic and incremental influence to decisions, while manipulating the relative uncertainty of incremental learning using a well-established manipulation of reward volatility. Across two large, independent samples of young adults, participants traded these influences off rationally, depending more on episodic information when incremental summaries were more uncertain. These results support the proposal that the brain optimizes the balance between different forms of learning and memory according to their relative uncertainties and elucidate the circumstances under which episodic memory informs decisions.