Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions

Abstract

The simultaneously imaging and manipulating of neural activity in three-dimensions could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to manipulate neural activity in mouse neocortex in vivo in 3D, while maintaining cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in cortical layer 2/3 from mouse visual cortex. We validate the usefulness of the microscope by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli. Our all-optical method could be used as a general platform to read and write activity of neural circuits.

Article and author information

Author details

  1. Weijian Yang

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    wejyang@ucdavis.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0941-3496
  2. Luis Carrillo-Reid

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  3. Yuki Bando

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  4. Darcy S Peterka

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    Darcy S Peterka, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-5820
  5. Rafael Yuste

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    rmy5@columbia.edu
    Competing interests
    Rafael Yuste, is listed as an inventor of the following patent: Devices.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4206-497X

Funding

National Eye Institute (DP1EY024503)

  • Rafael Yuste

National Institute of Mental Health (R44MH109187)

  • Darcy S Peterka

Defense Advanced Research Projects Agency (N66001-15-C-4032)

  • Rafael Yuste

National Institute of Mental Health (R01MH100561)

  • Rafael Yuste

National Eye Institute (R21EY027592)

  • Darcy S Peterka

National Institute of Mental Health (R01MH101218)

  • Rafael Yuste

Defense Advanced Research Projects Agency (W91NF-14-1-0269)

  • Rafael Yuste

Army Research Laboratory (W911NF-12-1-0594)

  • Rafael Yuste

Army Research Office (W911NF-12-1-0594)

  • Rafael Yuste

Burroughs Wellcome Fund (1015761)

  • Weijian Yang

Uehara Memorial Foundation

  • Yuki Bando

National Eye Institute (R01EY011787)

  • Rafael Yuste

National Institute of Mental Health (R41MH100895)

  • Rafael Yuste

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of Columbia University [protocol ID: AC-AAAM5100, AC-AAAM7951].

Copyright

© 2018, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 20,218
    views
  • 2,652
    downloads
  • 175
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weijian Yang
  2. Luis Carrillo-Reid
  3. Yuki Bando
  4. Darcy S Peterka
  5. Rafael Yuste
(2018)
Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions
eLife 7:e32671.
https://doi.org/10.7554/eLife.32671

Share this article

https://doi.org/10.7554/eLife.32671

Further reading

    1. Neuroscience
    Walter Senn, Dominik Dold ... Mihai A Petrovici
    Research Article

    One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.

    1. Neuroscience
    Mengqiao Cui, Xiaoyuan Pan ... Jun-Li Cao
    Research Article

    Memory impairment in chronic pain patients is substantial and common, and few therapeutic strategies are available. Chronic pain-related memory impairment has susceptible and unsusceptible features. Therefore, exploring the underlying mechanisms of its vulnerability is essential for developing effective treatments. Here, combining two spatial memory tests (Y-maze test and Morris water maze), we segregated chronic pain mice into memory impairment-susceptible and -unsusceptible subpopulations in a chronic neuropathic pain model induced by chronic constrictive injury of the sciatic nerve. RNA-Seq analysis and gain/loss-of-function study revealed that S1P/S1PR1 signaling is a determinant for vulnerability to chronic pain-related memory impairment. Knockdown of the S1PR1 in the dentate gyrus (DG) promoted a susceptible phenotype and led to structural plasticity changes of reduced excitatory synapse formation and abnormal spine morphology as observed in susceptible mice, while overexpression of the S1PR1 and pharmacological administration of S1PR1 agonist in the DG promoted an unsusceptible phenotype and prevented the occurrence of memory impairment, and rescued the morphological abnormality. Finally, the Gene Ontology (GO) enrichment analysis and biochemical evidence indicated that downregulation of S1PR1 in susceptible mice may impair DG structural plasticity via interaction with actin cytoskeleton rearrangement-related signaling pathways including Itga2 and its downstream Rac1/Cdc42 signaling and Arp2/3 cascade. These results reveal a novel mechanism and provide a promising preventive and therapeutic molecular target for vulnerability to chronic pain-related memory impairment.