Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

  1. Sophie M Morgani
  2. Jakob J Metzger
  3. Jennifer Nichols
  4. Eric D Siggia  Is a corresponding author
  5. Anna-Katerina Hadjantonakis  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. Rockefeller University, United States
  3. University of Cambridge, United Kingdom

Abstract

During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Sophie M Morgani

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jakob J Metzger

    Center for Studies in Physics and Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Nichols

    Wellcome Trust-MRC Center for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric D Siggia

    Center for Studies in Physics and Biology, Rockefeller University, New York, United States
    For correspondence
    siggiae@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7482-1854
  5. Anna-Katerina Hadjantonakis

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    hadj@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7580-5124

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK084391)

  • Anna-Katerina Hadjantonakis

National Cancer Institute (P30CA008748)

  • Anna-Katerina Hadjantonakis

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD080699)

  • Eric D Siggia

National Science Foundation (PHY1502151)

  • Eric D Siggia

Wellcome

  • Sophie M Morgani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Pera, University of Melbourne, Australia

Ethics

Animal experimentation: Animal experimentation: All mice used in this study were maintained in accordance withthe guidelines of the Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee (IACUC) under protocol number 03-12-017 (PI Hadjantonakis).

Version history

  1. Received: October 16, 2017
  2. Accepted: February 2, 2018
  3. Accepted Manuscript published: February 7, 2018 (version 1)
  4. Version of Record published: February 9, 2018 (version 2)
  5. Version of Record updated: February 12, 2019 (version 3)

Copyright

© 2018, Morgani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,144
    views
  • 1,515
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sophie M Morgani
  2. Jakob J Metzger
  3. Jennifer Nichols
  4. Eric D Siggia
  5. Anna-Katerina Hadjantonakis
(2018)
Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning
eLife 7:e32839.
https://doi.org/10.7554/eLife.32839

Share this article

https://doi.org/10.7554/eLife.32839

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.