1. Stem Cells and Regenerative Medicine
Download icon

Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

  1. Sophie M Morgani
  2. Jakob J Metzger
  3. Jennifer Nichols
  4. Eric D Siggia  Is a corresponding author
  5. Anna-Katerina Hadjantonakis  Is a corresponding author
  1. Memorial Sloan Kettering Cancer Center, United States
  2. Rockefeller University, United States
  3. University of Cambridge, United Kingdom
Research Article
  • Cited 65
  • Views 6,567
  • Annotations
Cite this article as: eLife 2018;7:e32839 doi: 10.7554/eLife.32839

Abstract

During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Sophie M Morgani

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jakob J Metzger

    Center for Studies in Physics and Biology, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jennifer Nichols

    Wellcome Trust-MRC Center for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric D Siggia

    Center for Studies in Physics and Biology, Rockefeller University, New York, United States
    For correspondence
    siggiae@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7482-1854
  5. Anna-Katerina Hadjantonakis

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    hadj@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7580-5124

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK084391)

  • Anna-Katerina Hadjantonakis

National Cancer Institute (P30CA008748)

  • Anna-Katerina Hadjantonakis

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01HD080699)

  • Eric D Siggia

National Science Foundation (PHY1502151)

  • Eric D Siggia

Wellcome

  • Sophie M Morgani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All mice used in this study were maintained in accordance withthe guidelines of the Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee (IACUC) under protocol number 03-12-017 (PI Hadjantonakis).

Reviewing Editor

  1. Martin Pera, University of Melbourne, Australia

Publication history

  1. Received: October 16, 2017
  2. Accepted: February 2, 2018
  3. Accepted Manuscript published: February 7, 2018 (version 1)
  4. Version of Record published: February 9, 2018 (version 2)
  5. Version of Record updated: February 12, 2019 (version 3)

Copyright

© 2018, Morgani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,567
    Page views
  • 1,146
    Downloads
  • 65
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Emma Carley et al.
    Research Article Updated

    While the mechanisms by which chemical signals control cell fate have been well studied, the impact of mechanical inputs on cell fate decisions is not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through linker of nucleoskeleton and cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Jack F Cazet et al.
    Research Article Updated

    During whole-body regeneration, a bisection injury can trigger two different types of regeneration. To understand the transcriptional regulation underlying this adaptive response, we characterized transcript abundance and chromatin accessibility during oral and aboral regeneration in the cnidarian Hydra vulgaris. We found that the initial response to amputation at both wound sites is identical and includes widespread apoptosis and the activation of the oral-specifying Wnt signaling pathway. By 8 hr post amputation, Wnt signaling became restricted to oral regeneration. Wnt pathway genes were also upregulated in puncture wounds, and these wounds induced the formation of ectopic oral structures if pre-existing organizers were simultaneously amputated. Our work suggests that oral patterning is activated as part of a generic injury response in Hydra, and that alternative injury outcomes are dependent on signals from the surrounding tissue. Furthermore, Wnt signaling is likely part of a conserved wound response predating the split of cnidarians and bilaterians.