SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation

Abstract

Glycogen synthase kinase 3 (GSK3) is a critical regulator of diverse cellular functions involved in the maintenance of structure and function. Enzymatic activity of GSK3 is inhibited by N-terminal serine phosphorylation. However, alternate post translational mechanism(s) responsible for GSK3 inactivation are not characterized. Here, we report that GSK3α and GSK3β are acetylated at Lys246 and Lys183 respectively. Molecular modeling and/or molecular dynamics simulations indicate that acetylation of GSK3 isoforms would hinder both the adenosine binding and prevent stable interactions of the negatively charged phosphates. We found that SIRT2 deacetylates GSK3β, and thus enhances its binding to ATP. Interestingly, the reduced activity of GSK3β is associated with lysine acetylation, but not with phosphorylation at Ser9 in hearts of SIRT2-deficient mice. Moreover, GSK3 is required for the anti-hypertrophic function of SIRT2 in cardiomyocytes. Overall, our study identified lysine acetylation as a novel post-translational modification regulating GSK3 activity.

Article and author information

Author details

  1. Mohsen Sarikhani

    Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Sneha Mishra

    Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Sangeeta Maity

    Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Chaithanya Kotyada

    Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Donald Wolfgeher

    Department of Molecular Genetics and Cell biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mahesh P Gupta

    Department of Surgery, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mahavir Singh

    Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Nagalingam R Sundaresan

    Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
    For correspondence
    rsundaresan@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1770-5616

Funding

Department of Biotechnology , Ministry of Science and Technology (BRB/10/1294/2014)

  • Nagalingam R Sundaresan

Department of Biotechnology , Ministry of Science and Technology (MED/30/1454/2014)

  • Nagalingam R Sundaresan

Department of Biotechnology , Ministry of Science and Technology (IYBA Award)

  • Nagalingam R Sundaresan

Department of Biotechnology , Ministry of Science and Technology (Ramalingaswami fellowship)

  • Nagalingam R Sundaresan

Department of Science and Technology, Ministry of Science and Technology (EMR/2014/000065)

  • Nagalingam R Sundaresan

Council of Scientific and Industrial Research (37(1646)/15/EMR-II)

  • Nagalingam R Sundaresan

Department of Science and Technology, Ministry of Science and Technology (N-PDF)

  • Sangeeta Maity

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed with the approval of Institutional animal ethics committee of Indian institute of science, Bengaluru, India. All the animal experiments were carried out as per the strict accordance with the recommendations of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India. The protocols were approved by the Institutional Animal Ethics Committee of the Indian Institute of Science (Permit Numbers: 559/2017, 568/2017, 376/2014 ). Mice were sacrificed using CO2 before harvesting and every effort was made to minimize suffering.

Copyright

© 2018, Sarikhani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,282
    views
  • 456
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mohsen Sarikhani
  2. Sneha Mishra
  3. Sangeeta Maity
  4. Chaithanya Kotyada
  5. Donald Wolfgeher
  6. Mahesh P Gupta
  7. Mahavir Singh
  8. Nagalingam R Sundaresan
(2018)
SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation
eLife 7:e32952.
https://doi.org/10.7554/eLife.32952

Share this article

https://doi.org/10.7554/eLife.32952

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.