Abstract

Sensory experience plays an important role in shaping neural circuitry by affecting the synaptic connectivity and intrinsic properties of individual neurons. Identifying the molecular players responsible for converting external stimuli into altered neuronal output remains a crucial step in understanding experience-dependent plasticity and circuit function. Here, we investigate the role of the activity-regulated, non-canonical Ras-like GTPase Rem2 in visual circuit plasticity. We demonstrate that Rem2-/- mice fail to exhibit normal ocular dominance plasticity during the critical period. At the cellular level, our data establish a cell-autonomous role for Rem2 in regulating intrinsic excitability of layer 2/3 pyramidal neurons, prior to changes in synaptic function. Consistent with these findings, both in vitro and in vivo recordings reveal increased spontaneous firing rates in the absence of Rem2. Taken together, our data demonstrate that Rem2 is a key molecule that regulates neuronal excitability and circuit function in the context of changing sensory experience.

Data availability

Imaging data is available at http://www.vhlab.org/data.All other data generated or analyzed during this study is included in the manuscript and supporting files.

Article and author information

Author details

  1. Anna R Moore

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sarah E Richards

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katelyn Kenny

    National Center for Behavioral Genomics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leandro Royer

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Urann Chan

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kelly Flavahan

    Department of Biology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephen D Van Hooser

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    vanhoosr@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1112-5832
  8. Suzanne Paradis

    Department of Biology, Brandeis University, Waltham, United States
    For correspondence
    paradis@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5190-4240

Funding

National Eye Institute (EY022122)

  • Stephen D Van Hooser

National Institute of Mental Health (K01MH101639)

  • Anna R Moore

National Institute of Neurological Disorders and Stroke (R01NS065856)

  • Suzanne Paradis

National Institute of Neurological Disorders and Stroke (Ruth L Kirschstein NIH Training Grant T32NS007292)

  • Anna R Moore

Charles Hood Foundation

  • Stephen D Van Hooser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures involving animals were performed in strict accordance with the recommendations set forth in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. All animal handling and experimental procedures were approved by the Institutional Animal Care and Use Committee at Brandeis University (Protocol Numbers: 16002 and 17004). Surgical procedures were performed under sterile conditions and every effort was made to minimize suffering.

Copyright

© 2018, Moore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,276
    views
  • 284
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna R Moore
  2. Sarah E Richards
  3. Katelyn Kenny
  4. Leandro Royer
  5. Urann Chan
  6. Kelly Flavahan
  7. Stephen D Van Hooser
  8. Suzanne Paradis
(2018)
Rem2 stabilizes intrinsic excitability and spontaneous firing in visual circuits
eLife 7:e33092.
https://doi.org/10.7554/eLife.33092

Share this article

https://doi.org/10.7554/eLife.33092

Further reading

    1. Neuroscience
    Maxwell Gillett, Nicolas Brunel
    Research Article

    Temporal rescaling of sequential neural activity has been observed in multiple brain areas during behaviors involving time estimation and motor execution at variable speeds. Temporally asymmetric Hebbian rules have been used in network models to learn and retrieve sequential activity, with characteristics that are qualitatively consistent with experimental observations. However, in these models sequential activity is retrieved at a fixed speed. Here, we investigate the effects of a heterogeneity of plasticity rules on network dynamics. In a model in which neurons differ by the degree of temporal symmetry of their plasticity rule, we find that retrieval speed can be controlled by varying external inputs to the network. Neurons with temporally symmetric plasticity rules act as brakes and tend to slow down the dynamics, while neurons with temporally asymmetric rules act as accelerators of the dynamics. We also find that such networks can naturally generate separate ‘preparatory’ and ‘execution’ activity patterns with appropriate external inputs.

    1. Neuroscience
    Jiayi Zhu, Jean-Christophe Boivin ... Tomoko Ohyama
    Research Article

    Escape behaviors help animals avoid harm from predators and other threats in the environment. Successful escape relies on integrating information from multiple stimulus modalities (of external or internal origin) to compute trajectories toward safe locations, choose between actions that satisfy competing motivations, and execute other strategies that ensure survival. To this end, escape behaviors must be adaptive. When a Drosophila melanogaster larva encounters a noxious stimulus, such as the focal pressure a parasitic wasp applies to the larval cuticle via its ovipositor, it initiates a characteristic escape response. The escape sequence consists of an initial abrupt bending, lateral rolling, and finally rapid crawling. Previous work has shown that the detection of noxious stimuli primarily relies on class IV multi-dendritic arborization neurons (Class IV neurons) located beneath the body wall, and more recent studies have identified several important components in the nociceptive neural circuitry involved in rolling. However, the neural mechanisms that underlie the rolling-escape sequence remain unclear. Here, we present both functional and anatomical evidence suggesting that bilateral descending neurons within the subesophageal zone of D. melanogaster larva play a crucial role in regulating the termination of rolling and subsequent transition to escape crawling. We demonstrate that these descending neurons (designated SeIN128) are inhibitory and receive inputs from a second-order interneuron upstream (Basin-2) and an ascending neuron downstream of Basin-2 (A00c). Together with optogenetic experiments showing that co-activation of SeIN128 neurons and Basin-2 influence the temporal dynamics of rolling, our findings collectively suggest that the ensemble of SeIN128, Basin-2, and A00c neurons forms a GABAergic feedback loop onto Basin-2, which inhibits rolling and thereby facilitates the shift to escape crawling.