Nicotinamide adenine dinucleotide is transported into mammalian mitochondria

  1. Antonio Davila
  2. Ling Liu
  3. Karthikeyani Chellappa
  4. Philip Redpath
  5. Eiko Nakamaru-Ogiso
  6. Lauren M Paolella
  7. Zhigang Zhang
  8. Marie E Migaud
  9. Joshua D Rabinowitz
  10. Joseph A Baur  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Princeton University, United States
  3. Queen's University Belfast, United Kingdom
  4. Northeast Agricultural University, China

Abstract

Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate that NAD(H) is the imported species. Our results challenge the long-held view that the mitochondrial inner membrane is impermeable to pyridine nucleotides and suggest the existence of an unrecognized mammalian NAD (or NADH) transporter.

Data availability

Source data for the figures has been submitted to Dryad doi:10.5061/dryad.qt58k

The following data sets were generated

Article and author information

Author details

  1. Antonio Davila

    Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ling Liu

    Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Karthikeyani Chellappa

    Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Philip Redpath

    School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Eiko Nakamaru-Ogiso

    Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0931-1940
  6. Lauren M Paolella

    Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhigang Zhang

    College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Marie E Migaud

    School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Joshua D Rabinowitz

    Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Joseph A Baur

    Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    baur@pennmedicine.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8262-6549

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK098656)

  • Joseph A Baur

National Institute on Aging (R01AG043483)

  • Joseph A Baur

National Institute of General Medical Sciences (K12DGM081259)

  • Antonio Davila

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew Dillin, Howard Hughes Medical Institute, University of California, Berkeley, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. No live animal work was performed, and animals that were sacrificed for mitochondrial isolation were euthanized according to protocols approved by the institutional animal care and use committee (IACUC) of the University of Pennsylvania (protocol # 804892).

Version history

  1. Received: October 31, 2017
  2. Accepted: June 10, 2018
  3. Accepted Manuscript published: June 12, 2018 (version 1)
  4. Version of Record published: June 21, 2018 (version 2)
  5. Version of Record updated: July 5, 2018 (version 3)

Copyright

© 2018, Davila et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,442
    views
  • 1,550
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Davila
  2. Ling Liu
  3. Karthikeyani Chellappa
  4. Philip Redpath
  5. Eiko Nakamaru-Ogiso
  6. Lauren M Paolella
  7. Zhigang Zhang
  8. Marie E Migaud
  9. Joshua D Rabinowitz
  10. Joseph A Baur
(2018)
Nicotinamide adenine dinucleotide is transported into mammalian mitochondria
eLife 7:e33246.
https://doi.org/10.7554/eLife.33246

Share this article

https://doi.org/10.7554/eLife.33246

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.