The signaling lipid sphingosine 1-phosphate regulates mechanical pain

  1. Rose Z Hill
  2. Benjamin U Hoffman
  3. Takeshi Morita
  4. Stephanie M Campos
  5. Ellen A Lumpkin
  6. Rachel B Brem
  7. Diana M Bautista  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Columbia University, United States
  3. Marine Biological Laboratory, United States

Abstract

Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Rose Z Hill

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin U Hoffman

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Takeshi Morita

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8570-6744
  4. Stephanie M Campos

    Neurobiology Course, Marine Biological Laboratory, Woods Hole, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ellen A Lumpkin

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel B Brem

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Diana M Bautista

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    dbautista@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6809-8951

Funding

National Institute of Neurological Disorders and Stroke (NS077224)

  • Rachel B Brem
  • Diana M Bautista

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR059385)

  • Diana M Bautista

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR051219)

  • Ellen A Lumpkin

National Institute of Neurological Disorders and Stroke (NS105449)

  • Benjamin U Hoffman

National Institute of General Medical Sciences (GM007367)

  • Benjamin U Hoffman

Howard Hughes Medical Institute (Faculty Scholar Award)

  • Diana M Bautista

National Institute of Neurological Disorders and Stroke (NS098097)

  • Rachel B Brem
  • Diana M Bautista

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed under the policies and recommendations of the International Association for the Study of Pain and approved by the University of California, Berkeley Animal Care and Use Committee (Protocol Number: AUP-2017-02-9550).

Copyright

© 2018, Hill et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,260
    views
  • 616
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rose Z Hill
  2. Benjamin U Hoffman
  3. Takeshi Morita
  4. Stephanie M Campos
  5. Ellen A Lumpkin
  6. Rachel B Brem
  7. Diana M Bautista
(2018)
The signaling lipid sphingosine 1-phosphate regulates mechanical pain
eLife 7:e33285.
https://doi.org/10.7554/eLife.33285

Share this article

https://doi.org/10.7554/eLife.33285

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.