NOTCH activity differentially affects pituitary endocrine cell fate acquisition and maintenance

  1. Leonard Cheung
  2. Paul Le Tissier
  3. Sam GJ Goldsmith
  4. Mathias Treier
  5. Robin Lovell-Badge
  6. Karine Rizzoti  Is a corresponding author
  1. University of Michigan, United States
  2. University of Edinburgh, United Kingdom
  3. The Francis Crick Institute, United Kingdom
  4. Max Delbruck Center for Molecular Medicine, Germany

Abstract

The pituitary is an essential endocrine gland regulating multiple processes. Regeneration of endocrine cells is of therapeutic interest and recent studies are promising, but mechanisms of endocrine cell fate acquisition need to be better characterised. The NOTCH pathway is important during pituitary development. Here, we further characterise its role in the murine pituitary, revealing differential sensitivity within and between lineages. In progenitors, NOTCH activation blocks cell fate acquisition, with time-dependant modulation. In differentiating cells, response to activation is blunted in the POU1F1 lineage, with apparently normal cell fate specification, while POMC cells remain sensitive. Absence of apparent defects in Pou1f1-Cre; Rbpjfl/fl mice further suggests no direct role for NOTCH signalling in POU1F1 cell fate acquisition. In contrast, in the POMC lineage, NICD expression induces a regression towards a progenitor-like state, suggesting that the NOTCH pathway specifically blocks POMC cell differentiation. These results have implications for pituitary development, plasticity and regeneration.

Article and author information

Author details

  1. Leonard Cheung

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0912-9594
  2. Paul Le Tissier

    Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Sam GJ Goldsmith

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Mathias Treier

    Genetics of Metabolic and Reproductive Disorders, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Robin Lovell-Badge

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Karine Rizzoti

    Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Karine.Rizzoti@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0711-5452

Funding

Medical Research Council (U117562207)

  • Paul Le Tissier

Cancer Research UK (FC001107)

  • Robin Lovell-Badge

Medical Research Council (U117512772)

  • Robin Lovell-Badge

Medical Research Council (FC001107)

  • Robin Lovell-Badge

Wellcome (FC001107)

  • Robin Lovell-Badge

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elizabeth Robertson, University of Oxford, United Kingdom

Ethics

Animal experimentation: All experiments carried out on mice were approved under the UK Animal (scientific procedures) Act (Project licence 80/2405 and 70/8560).

Version history

  1. Received: November 3, 2017
  2. Accepted: March 24, 2018
  3. Accepted Manuscript published: March 26, 2018 (version 1)
  4. Version of Record published: April 6, 2018 (version 2)

Copyright

© 2018, Cheung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,632
    views
  • 292
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Leonard Cheung
  2. Paul Le Tissier
  3. Sam GJ Goldsmith
  4. Mathias Treier
  5. Robin Lovell-Badge
  6. Karine Rizzoti
(2018)
NOTCH activity differentially affects pituitary endocrine cell fate acquisition and maintenance
eLife 7:e33318.
https://doi.org/10.7554/eLife.33318

Share this article

https://doi.org/10.7554/eLife.33318

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.