Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum

  1. Marta Maltese
  2. Jennifer Stanic
  3. Annalisa Tassone
  4. Giuseppe Sciamanna
  5. Giulia Ponterio
  6. Valentina Vanni
  7. Giuseppina Martella
  8. Paola Imbriani
  9. Paola Bonsi
  10. Nicola Biagio Mercuri
  11. Fabrizio Gardoni
  12. Antonio Pisani  Is a corresponding author
  1. University of Rome Tor Vergata, Italy
  2. University of Milan, Italy
  3. Fondazione Santa Lucia IRCCS, Italy

Abstract

The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, though it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.

Article and author information

Author details

  1. Marta Maltese

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer Stanic

    Department of Pharmacology, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Annalisa Tassone

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Giuseppe Sciamanna

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Giulia Ponterio

    Lab Neurophysiology and Plasticity, Fondazione Santa Lucia IRCCS, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentina Vanni

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Giuseppina Martella

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Paola Imbriani

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-5073
  9. Paola Bonsi

    Lab Neurophysiology and Plasticity, Fondazione Santa Lucia IRCCS, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5940-9028
  10. Nicola Biagio Mercuri

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Fabrizio Gardoni

    Department of Pharmacology, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Antonio Pisani

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    For correspondence
    pisani@uniroma2.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-594X

Funding

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN 2010-2011)

  • Antonio Pisani

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN 2010-2011)

  • Fabrizio Gardoni

Dystonia Medical Research Foundation (2017)

  • Antonio Pisani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal breeding and handling were performed in accordance with the guidelines for the use of animals in biomedical research provided by the European Union's directives and Italian laws (2010/63EU, D.lgs. 26/2014; 406 86/609/CEE, D.Lgs 116/1992). The experimental procedures were approved by Fondazione Santa Lucia and University Tor Vergata Animal Care and Use Committees and the Italian Ministry of Health (authorization #223/2017-PR).

Copyright

© 2018, Maltese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.33331

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

    1. Neuroscience
    Baher A Ibrahim, Yoshitaka Shinagawa ... Daniel A Llano
    Research Article

    To navigate real-world listening conditions, the auditory system relies on the integration of multiple sources of information. However, to avoid inappropriate cross-talk between inputs, highly connected neural systems need to strike a balance between integration and segregation. Here, we develop a novel approach to examine how repeated neurochemical modules in the mouse inferior colliculus lateral cortex (LC) allow controlled integration of its multimodal inputs. The LC had been impossible to study via imaging because it is buried in a sulcus. Therefore, we coupled two-photon microscopy with the use of a microprism to reveal the first-ever sagittal views of the LC to examine neuronal responses with respect to its neurochemical motifs under anesthetized and awake conditions. This approach revealed marked differences in the acoustic response properties of LC and neighboring non-lemniscal portions of the inferior colliculus. In addition, we observed that the module and matrix cellular motifs of the LC displayed distinct somatosensory and auditory responses. Specifically, neurons in modules demonstrated primarily offset responses to acoustic stimuli with enhancement in responses to bimodal stimuli, whereas matrix neurons showed onset response to acoustic stimuli and suppressed responses to bimodal stimulation. Thus, this new approach revealed that the repeated structural motifs of the LC permit functional integration of multimodal inputs while retaining distinct response properties.