Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum

Abstract

The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, though it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.

Article and author information

Author details

  1. Marta Maltese

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Jennifer Stanic

    Department of Pharmacology, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Annalisa Tassone

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Giuseppe Sciamanna

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Giulia Ponterio

    Lab Neurophysiology and Plasticity, Fondazione Santa Lucia IRCCS, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Valentina Vanni

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Giuseppina Martella

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Paola Imbriani

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3373-5073
  9. Paola Bonsi

    Lab Neurophysiology and Plasticity, Fondazione Santa Lucia IRCCS, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5940-9028
  10. Nicola Biagio Mercuri

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Fabrizio Gardoni

    Department of Pharmacology, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  12. Antonio Pisani

    Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
    For correspondence
    pisani@uniroma2.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8432-594X

Funding

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN 2010-2011)

  • Antonio Pisani

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN 2010-2011)

  • Fabrizio Gardoni

Dystonia Medical Research Foundation (2017)

  • Antonio Pisani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian Rosenmund, Charité-Universitätsmedizin Berlin, Germany

Ethics

Animal experimentation: Animal breeding and handling were performed in accordance with the guidelines for the use of animals in biomedical research provided by the European Union's directives and Italian laws (2010/63EU, D.lgs. 26/2014; 406 86/609/CEE, D.Lgs 116/1992). The experimental procedures were approved by Fondazione Santa Lucia and University Tor Vergata Animal Care and Use Committees and the Italian Ministry of Health (authorization #223/2017-PR).

Version history

  1. Received: November 3, 2017
  2. Accepted: March 2, 2018
  3. Accepted Manuscript published: March 5, 2018 (version 1)
  4. Version of Record published: March 13, 2018 (version 2)

Copyright

© 2018, Maltese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,728
    views
  • 303
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Maltese
  2. Jennifer Stanic
  3. Annalisa Tassone
  4. Giuseppe Sciamanna
  5. Giulia Ponterio
  6. Valentina Vanni
  7. Giuseppina Martella
  8. Paola Imbriani
  9. Paola Bonsi
  10. Nicola Biagio Mercuri
  11. Fabrizio Gardoni
  12. Antonio Pisani
(2018)
Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum
eLife 7:e33331.
https://doi.org/10.7554/eLife.33331

Share this article

https://doi.org/10.7554/eLife.33331

Further reading

    1. Neuroscience
    Cristina Sáenz de Miera, Nicole Bellefontaine ... Carol F Elias
    Research Article

    The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

    1. Neuroscience
    Zahra Ghasemahmad, Aaron Mrvelj ... Jeffrey J Wenstrup
    Research Article

    The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener’s internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.