Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling

  1. Xin Huang
  2. Sophie Balmer
  3. Fan Yang
  4. Miguel Fidalgo
  5. Dan Li
  6. Diana Guallar
  7. Anna-Katerina Hadjantonakis  Is a corresponding author
  8. Jianlong Wang  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. Memorial Sloan Kettering Cancer Center, United States

Abstract

Pluripotency is defined by a cell's potential to differentiate into any somatic cell type. How pluripotency is transited during implantation, followed by lineage specification and establishment of the basic body plan is poorly understood. Here we report the transcription factor Zfp281 functions in the exit from naive pluripotency occurring coincident with pre-to-post-implantation mouse embryonic development. By characterizing Zfp281 mutant phenotypes and identifying Zfp281 gene targets and protein partners in developing embryos and cultured pluripotent stem cells, we establish critical roles for Zfp281 in activating components of the Nodal signaling pathway and lineage-specific genes. Mechanistically, Zfp281 cooperates with histone acetylation and methylation complexes at target gene enhancers and promoters to exert transcriptional activation and repression, as well as epigenetic control of epiblast maturation leading up to anterior-posterior axis specification. Our study provides a comprehensive molecular model for understanding pluripotent state progression in vivo during mammalian embryonic development.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xin Huang

    The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Balmer

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6561-552X
  3. Fan Yang

    The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Miguel Fidalgo

    The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-2674
  5. Dan Li

    The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Diana Guallar

    The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna-Katerina Hadjantonakis

    Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    hadj@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7580-5124
  8. Jianlong Wang

    The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    jianlong.wang@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1317-6457

Funding

National Institutes of Health (R01-GM095942)

  • Jianlong Wang

National Institutes of Health (R21-HD087722)

  • Jianlong Wang

New York State Department of Health (C028103)

  • Jianlong Wang

New York State Department of Health (C028121)

  • Jianlong Wang

National Institutes of Health (R01-DK084391)

  • Anna-Katerina Hadjantonakis

National Institutes of Health (P30-CA008748)

  • Anna-Katerina Hadjantonakis

New York State Department of Health (C029568)

  • Anna-Katerina Hadjantonakis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice used in this study were maintained in accordance with the guidelines of the Memorial Sloan Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee (IACUC) under protocol number 03-12-017 (PI Hadjantonakis).

Reviewing Editor

  1. Marianne Bronner, California Institute of Technology, United States

Publication history

  1. Received: November 6, 2017
  2. Accepted: November 17, 2017
  3. Accepted Manuscript published: November 23, 2017 (version 1)
  4. Version of Record published: November 30, 2017 (version 2)

Copyright

© 2017, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,863
    Page views
  • 453
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xin Huang
  2. Sophie Balmer
  3. Fan Yang
  4. Miguel Fidalgo
  5. Dan Li
  6. Diana Guallar
  7. Anna-Katerina Hadjantonakis
  8. Jianlong Wang
(2017)
Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling
eLife 6:e33333.
https://doi.org/10.7554/eLife.33333

Further reading

    1. Developmental Biology
    2. Physics of Living Systems
    Guizela Huelsz-Prince, Rutger Nico Ulbe Kok ... Jeroen S van Zon
    Research Article

    During renewal of the intestine, cells are continuously generated by proliferation. Proliferation and differentiation must be tightly balanced, as any bias toward proliferation results in uncontrolled exponential growth. Yet, the inherently stochastic nature of cells raises the question how such fluctuations are limited. We used time-lapse microscopy to track all cells in crypts of growing mouse intestinal organoids for multiple generations, allowing full reconstruction of the underlying lineage dynamics in space and time. Proliferative behavior was highly symmetric between sister cells, with both sisters either jointly ceasing or continuing proliferation. Simulations revealed that such symmetric proliferative behavior minimizes cell number fluctuations, explaining our observation that proliferating cell number remained constant even as crypts increased in size considerably. Proliferative symmetry did not reflect positional symmetry but rather lineage control through the mother cell. Our results indicate a concrete mechanism to balance proliferation and differentiation with minimal fluctuations that may be broadly relevant for other tissues.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Amrita A Iyer, Ishwar Hosamani ... Andrew K Groves
    Research Article

    Reprogramming of the cochlea with hair-cell-specific transcription factors such as ATOH1 has been proposed as a potential therapeutic strategy for hearing loss. ATOH1 expression in the developing cochlea can efficiently induce hair cell regeneration but the efficiency of hair cell reprogramming declines rapidly as the cochlea matures. We developed Cre-inducible mice to compare hair cell reprogramming with ATOH1 alone or in combination with two other hair cell transcription factors, GFI1 and POU4F3. In newborn mice, all transcription factor combinations tested produced large numbers of cells with the morphology of hair cells and rudimentary mechanotransduction properties. However, 1 week later, only a combination of ATOH1, GFI1 and POU4F3 could reprogram non-sensory cells of the cochlea to a hair cell fate, and these new cells were less mature than cells generated by reprogramming 1 week earlier. We used scRNA-seq and combined scRNA-seq and ATAC-seq to suggest at least two impediments to hair cell reprogramming in older animals. First, hair cell gene loci become less epigenetically accessible in non-sensory cells of the cochlea with increasing age. Second, signaling from hair cells to supporting cells, including Notch signaling, can prevent reprogramming of many supporting cells to hair cells, even with three hair cell transcription factors. Our results shed light on the molecular barriers that must be overcome to promote hair cell regeneration in the adult cochlea.