Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells

  1. Stefanie Giera
  2. Rong Luo
  3. Yanqin Ying
  4. Sarah D Ackerman
  5. Sung-Jin Jeong
  6. Hannah M Stoveken
  7. Christopher J Folts
  8. Christina A Welsh
  9. Gregory G Tall
  10. Beth Stevens
  11. Kelly R Monk  Is a corresponding author
  12. Xianhua Piao  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Washington University School of Medicine, United States
  3. University of Michigan Medical Center, United States

Abstract

In the central nervous system (CNS), myelin formation and repair are regulated by oligodendrocyte (OL) lineage cells, which sense and integrate signals from their environment, including from other glial cells and the extracellular matrix (ECM). The signaling pathways that coordinate this complex communication, however, remain poorly understood. The adhesion G protein-coupled receptor ADGRG1 (also known as ADGRG1) is an evolutionarily conserved regulator of OL development in humans, mice, and zebrafish, although its activating ligand for OL lineage cells is unknown. Here, we report that microglia-derived transglutaminase-2 (TG2) signals to ADGRG1 on OL precursor cells (OPCs) in the presence of the ECM protein laminin and that TG2/laminin-dependent activation of ADGRG1 promotes OPC proliferation. Signaling by TG2/laminin to ADGRG1 on OPCs additionally improves remyelination in two murine models of demyelination. These findings identify a novel glia-to-glia signaling pathway that promotes myelin formation and repair, and suggest new strategies to enhance remyelination.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Stefanie Giera

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Rong Luo

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Yanqin Ying

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Sarah D Ackerman

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  5. Sung-Jin Jeong

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Hannah M Stoveken

    Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Christopher J Folts

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0448-3711
  8. Christina A Welsh

    FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9802-725X
  9. Gregory G Tall

    Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  10. Beth Stevens

    FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
    Competing interests
    Beth Stevens, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4226-1201
  11. Kelly R Monk

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    For correspondence
    monkk@wustl.edu
    Competing interests
    No competing interests declared.
  12. Xianhua Piao

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    For correspondence
    Xianhua.Piao@childrens.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7540-6767

Funding

National Institute of Neurological Disorders and Stroke (NS094164)

  • Xianhua Piao

National Multiple Sclerosis Society (RG-1501-02577)

  • Xianhua Piao

National Institute of Neurological Disorders and Stroke (NS08520)

  • Xianhua Piao

National Institute of Neurological Disorders and Stroke (NS079445)

  • Kelly R Monk

National Multiple Sclerosis Society (FG 2063-A1/2)

  • Stefanie Giera

National Multiple Sclerosis Society (Harry Weaver Neuroscience Fellowship)

  • Kelly R Monk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance to the guidelines of the Animal Care and Use Committee (IACUC) protocols (17-12-3578R and 17-03-3378R) at Boston Children's Hospital. Zebrafish experiments were performed in compliance with Washington University's Institutional Animal Care and Use Committee (IACUC) protocol (20160174)

Copyright

© 2018, Giera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,756
    views
  • 712
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefanie Giera
  2. Rong Luo
  3. Yanqin Ying
  4. Sarah D Ackerman
  5. Sung-Jin Jeong
  6. Hannah M Stoveken
  7. Christopher J Folts
  8. Christina A Welsh
  9. Gregory G Tall
  10. Beth Stevens
  11. Kelly R Monk
  12. Xianhua Piao
(2018)
Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells
eLife 7:e33385.
https://doi.org/10.7554/eLife.33385

Share this article

https://doi.org/10.7554/eLife.33385

Further reading

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.