Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells

  1. Stefanie Giera
  2. Rong Luo
  3. Yanqin Ying
  4. Sarah D Ackerman
  5. Sung-Jin Jeong
  6. Hannah M Stoveken
  7. Christopher J Folts
  8. Christina A Welsh
  9. Gregory G Tall
  10. Beth Stevens
  11. Kelly R Monk  Is a corresponding author
  12. Xianhua Piao  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Washington University School of Medicine, United States
  3. University of Michigan Medical Center, United States

Abstract

In the central nervous system (CNS), myelin formation and repair are regulated by oligodendrocyte (OL) lineage cells, which sense and integrate signals from their environment, including from other glial cells and the extracellular matrix (ECM). The signaling pathways that coordinate this complex communication, however, remain poorly understood. The adhesion G protein-coupled receptor ADGRG1 (also known as ADGRG1) is an evolutionarily conserved regulator of OL development in humans, mice, and zebrafish, although its activating ligand for OL lineage cells is unknown. Here, we report that microglia-derived transglutaminase-2 (TG2) signals to ADGRG1 on OL precursor cells (OPCs) in the presence of the ECM protein laminin and that TG2/laminin-dependent activation of ADGRG1 promotes OPC proliferation. Signaling by TG2/laminin to ADGRG1 on OPCs additionally improves remyelination in two murine models of demyelination. These findings identify a novel glia-to-glia signaling pathway that promotes myelin formation and repair, and suggest new strategies to enhance remyelination.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Stefanie Giera

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Rong Luo

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  3. Yanqin Ying

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Sarah D Ackerman

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    Competing interests
    No competing interests declared.
  5. Sung-Jin Jeong

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  6. Hannah M Stoveken

    Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  7. Christopher J Folts

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0448-3711
  8. Christina A Welsh

    FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9802-725X
  9. Gregory G Tall

    Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  10. Beth Stevens

    FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
    Competing interests
    Beth Stevens, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4226-1201
  11. Kelly R Monk

    Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
    For correspondence
    monkk@wustl.edu
    Competing interests
    No competing interests declared.
  12. Xianhua Piao

    Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Boston, United States
    For correspondence
    Xianhua.Piao@childrens.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7540-6767

Funding

National Institute of Neurological Disorders and Stroke (NS094164)

  • Xianhua Piao

National Multiple Sclerosis Society (RG-1501-02577)

  • Xianhua Piao

National Institute of Neurological Disorders and Stroke (NS08520)

  • Xianhua Piao

National Institute of Neurological Disorders and Stroke (NS079445)

  • Kelly R Monk

National Multiple Sclerosis Society (FG 2063-A1/2)

  • Stefanie Giera

National Multiple Sclerosis Society (Harry Weaver Neuroscience Fellowship)

  • Kelly R Monk

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance to the guidelines of the Animal Care and Use Committee (IACUC) protocols (17-12-3578R and 17-03-3378R) at Boston Children's Hospital. Zebrafish experiments were performed in compliance with Washington University's Institutional Animal Care and Use Committee (IACUC) protocol (20160174)

Reviewing Editor

  1. Klaus-Armin Nave, Max Planck Institute for Experimental Medicine, Germany

Publication history

  1. Received: November 6, 2017
  2. Accepted: May 18, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: May 31, 2018 (version 2)

Copyright

© 2018, Giera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,913
    Page views
  • 600
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefanie Giera
  2. Rong Luo
  3. Yanqin Ying
  4. Sarah D Ackerman
  5. Sung-Jin Jeong
  6. Hannah M Stoveken
  7. Christopher J Folts
  8. Christina A Welsh
  9. Gregory G Tall
  10. Beth Stevens
  11. Kelly R Monk
  12. Xianhua Piao
(2018)
Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells
eLife 7:e33385.
https://doi.org/10.7554/eLife.33385

Further reading

    1. Medicine
    2. Neuroscience
    Guido I Guberman et al.
    Research Article

    Background: The heterogeneity of white matter damage and symptoms in concussion has been identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI (dMRI) studies on concussion have traditionally relied on group-comparison approaches that average out heterogeneity. To leverage, rather than average out, concussion heterogeneity, we combined dMRI and multivariate statistics to characterize multi-tract multi-symptom relationships.

    Methods: Using cross-sectional data from 306 previously-concussed children aged 9-10 from the Adolescent Brain Cognitive Development Study, we built connectomes weighted by classical and emerging diffusion measures. These measures were combined into two informative indices, the first representing microstructural complexity, the second representing axonal density. We deployed pattern-learning algorithms to jointly decompose these connectivity features and 19 symptom measures.

    Results: Early multi-tract multi-symptom pairs explained the most covariance and represented broad symptom categories, such as a general problems pair, or a pair representing all cognitive symptoms, and implicated more distributed networks of white matter tracts. Further pairs represented more specific symptom combinations, such as a pair representing attention problems exclusively, and were associated with more localized white matter abnormalities. Symptom representation was not systematically related to tract representation across pairs. Sleep problems were implicated across most pairs, but were related to different connections across these pairs. Expression of multi-tract features was not driven by sociodemographic and injury-related variables, as well as by clinical subgroups defined by the presence of ADHD. Analyses performed on a replication dataset showed consistent results.

    Conclusions: Using a double-multivariate approach, we identified clinically-informative, cross-demographic multi-tract multi-symptom relationships. These results suggest that rather than clear one-to-one symptom-connectivity disturbances, concussions may be characterized by subtypes of symptom/connectivity relationships. The symptom/connectivity relationships identified in multi-tract multi-symptom pairs were not apparent in single-tract/single-symptom analyses. Future studies aiming to better understand connectivity/symptom relationships should take into account multi-tract multi-symptom heterogeneity.

    Funding: financial support for this work from a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (GIG), an Ontario Graduate Scholarship (SS), a Restracomp Research Fellowship provided by the Hospital for Sick Children (SS), an Institutional Research Chair in Neuroinformatics (MD), as well as a Natural Sciences and Engineering Research Council CREATE grant (MD).

    1. Neuroscience
    Lior Matityahu et al.
    Research Article

    Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating α4β2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feed-forward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of α4β2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing and synaptic plasticity.