Environmental stimuli shape microglial plasticity in glioma

  1. Stefano Garofalo
  2. Alessandra Porzia
  3. Fabrizio Mainiero
  4. Silvia Di Angelantonio
  5. Barbara Cortese
  6. Bernadette Basilico
  7. Francesca Pagani
  8. Giorgio Cignitti
  9. Giuseppina Chece
  10. Roberta Maggio
  11. Eve Tremblay
  12. Julie Savage
  13. Kanchan Bisht
  14. Vincenzo Esposito
  15. Giovanni Bernardini
  16. Thomas Seyfried
  17. Jakub Mieczkowski
  18. Karolina Stepniak
  19. Bozena Kaminska
  20. Angela Santoni
  21. Cristina Limatola  Is a corresponding author
  1. IRCCS Neuromed, Italy
  2. Sapienza University, Italy
  3. Consiglio Nazionale delle Ricerche, Italy
  4. Istituto Italiano di Tecnologia, Italy
  5. Université Laval, Canada
  6. Boston College, United States
  7. Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Poland

Abstract

In glioma, microglia and infiltrating macrophages are exposed to factors that force them to produce cytokines and chemokines, contributing to tumor growth and maintaining a pro-tumorigenic, immunosuppressed microenvironment. We demonstrate that housing glioma-bearing mice in enriched environment (EE) reverts the immunosuppressive phenotype of infiltrating myeloid cells, by modulating inflammatory gene expression. Under these conditions, branching and patrolling activity of myeloid cells is increased, and their phagocytic activity is promoted. Modulation of gene expression depends on interferon-(IFN) g produced by natural killer (NK) cells, disappearing in mice depleted of NK cells or lacking IFN-g, and was mimicked by exogenous interleukin-15 (IL-15). Further, we describe a key role for BDNF produced in the brain of mice housed in EE in mediating the expression of IL-15 in CD11b+ cells. These data define novel mechanisms linking environmental cues to the acquisition of a pro-inflammatory, anti-tumor microenvironment in mouse brain.

Article and author information

Author details

  1. Stefano Garofalo

    IRCCS Neuromed, Pozzilli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Alessandra Porzia

    IRCCS Neuromed, Pozzilli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Fabrizio Mainiero

    Department of Experimental Medicine, Sapienza University, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Silvia Di Angelantonio

    Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1434-3648
  5. Barbara Cortese

    Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Bernadette Basilico

    Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Francesca Pagani

    Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Giorgio Cignitti

    Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Giuseppina Chece

    Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Roberta Maggio

    Department of Experimental Medicine, Sapienza University, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Eve Tremblay

    Département de médecine moléculaire, Université Laval, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Julie Savage

    Département de médecine moléculaire, Université Laval, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  13. Kanchan Bisht

    Département de médecine moléculaire, Université Laval, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Vincenzo Esposito

    IRCCS Neuromed, Pozzilli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  15. Giovanni Bernardini

    IRCCS Neuromed, Pozzilli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  16. Thomas Seyfried

    Biology department, Boston College, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Jakub Mieczkowski

    Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  18. Karolina Stepniak

    Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  19. Bozena Kaminska

    Neurobiology Center, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  20. Angela Santoni

    IRCCS Neuromed, Pozzilli, Italy
    Competing interests
    The authors declare that no competing interests exist.
  21. Cristina Limatola

    IRCCS Neuromed, Pozzilli, Italy
    For correspondence
    cristina.limatola@uniroma1.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7504-8197

Funding

Associazione Italiana per la Ricerca sul Cancro (AIRC2015 IG16699)

  • Cristina Limatola

Ministero Istruzione Università Ricerca (PRIN 2015)

  • Cristina Limatola

CRCHU (Starting Grant)

  • Eve Tremblay

European Commission (Euronanomed2: Nanoglio)

  • Angela Santoni

Associazione Italiana per la Ricerca sul Cancro (AIRC2014 IG16014)

  • Angela Santoni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Serge Przedborski, Columbia University Medical Center, United States

Ethics

Animal experimentation: The protocol was approved by the Ministry of Health of Italy in accordance with the guidelines on the ethical use of animals from the EC council directive of September 22, 2010 (2010/63/EU).

Version history

  1. Received: November 9, 2017
  2. Accepted: December 28, 2017
  3. Accepted Manuscript published: December 29, 2017 (version 1)
  4. Version of Record published: January 19, 2018 (version 2)

Copyright

© 2017, Garofalo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,265
    views
  • 425
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefano Garofalo
  2. Alessandra Porzia
  3. Fabrizio Mainiero
  4. Silvia Di Angelantonio
  5. Barbara Cortese
  6. Bernadette Basilico
  7. Francesca Pagani
  8. Giorgio Cignitti
  9. Giuseppina Chece
  10. Roberta Maggio
  11. Eve Tremblay
  12. Julie Savage
  13. Kanchan Bisht
  14. Vincenzo Esposito
  15. Giovanni Bernardini
  16. Thomas Seyfried
  17. Jakub Mieczkowski
  18. Karolina Stepniak
  19. Bozena Kaminska
  20. Angela Santoni
  21. Cristina Limatola
(2017)
Environmental stimuli shape microglial plasticity in glioma
eLife 6:e33415.
https://doi.org/10.7554/eLife.33415

Share this article

https://doi.org/10.7554/eLife.33415

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.