Role of the visual experience-dependent nascent proteome in neuronal plasticity
Abstract
Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor 3 subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity.
Data availability
-
Xenopus brainProteomeExchange number: PXD008659.
Article and author information
Author details
Funding
National Institutes of Health (EY011261)
- Han-Hsuan Liu
- Lucio Schiapparelli
- Wanhua Shen
- Hollis T Cline
National Institutes of Health (EY019005)
- Han-Hsuan Liu
- Lucio Schiapparelli
- Hollis T Cline
National Institutes of Health (MH067880)
- Daniel B Mcclatchy
- John R Yates
National Institutes of Health (MH100175)
- Daniel B Mcclatchy
- John R Yates
DartNeuroScience LLC
- Han-Hsuan Liu
- Hollis T Cline
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal protocols (#08-0083-4) were approved by the Institutional Animal Use and Care Committee of The Scripps Research Institute.
Copyright
© 2018, Liu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 27
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.