Role of the visual experience-dependent nascent proteome in neuronal plasticity

Abstract

Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor 3 subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity.

Data availability

The following data sets were generated
    1. Liu et al
    (2018) Xenopus Brain Proteome
    ftp://MSV000081728@massive.ucsd.edu.
The following previously published data sets were used

Article and author information

Author details

  1. Han-Hsuan Liu

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5330-1689
  2. Daniel B Mcclatchy

    Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucio Schiapparelli

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Wanhua Shen

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John R Yates

    Department of Neuroscience, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hollis T Cline

    The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    For correspondence
    cline@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4887-9603

Funding

National Institutes of Health (EY011261)

  • Han-Hsuan Liu
  • Lucio Schiapparelli
  • Wanhua Shen
  • Hollis T Cline

National Institutes of Health (EY019005)

  • Han-Hsuan Liu
  • Lucio Schiapparelli
  • Hollis T Cline

National Institutes of Health (MH067880)

  • Daniel B Mcclatchy
  • John R Yates

National Institutes of Health (MH100175)

  • Daniel B Mcclatchy
  • John R Yates

DartNeuroScience LLC

  • Han-Hsuan Liu
  • Hollis T Cline

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols (#08-0083-4) were approved by the Institutional Animal Use and Care Committee of The Scripps Research Institute.

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,432
    views
  • 394
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Han-Hsuan Liu
  2. Daniel B Mcclatchy
  3. Lucio Schiapparelli
  4. Wanhua Shen
  5. John R Yates
  6. Hollis T Cline
(2018)
Role of the visual experience-dependent nascent proteome in neuronal plasticity
eLife 7:e33420.
https://doi.org/10.7554/eLife.33420

Share this article

https://doi.org/10.7554/eLife.33420

Further reading

    1. Neuroscience
    GVS Devakinandan, Mark Terasaki, Adish Dani
    Research Article

    Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.