Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore

  1. Xun X Bao
  2. Christos Spanos
  3. Tomoko Kojidani
  4. Eric M Lynch
  5. Juri Rappsilber
  6. Yasushi Hiraoka
  7. Tokuko Haraguchi
  8. Kenneth E Sawin  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. National Institute of Information and Communications Technology, Japan

Abstract

Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the g-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.

Data availability

The mass spectrometry proteomics data from both LFQ and SILAC experiments have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD008334

The following data sets were generated

Article and author information

Author details

  1. Xun X Bao

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4733-3550
  2. Christos Spanos

    Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4376-8242
  3. Tomoko Kojidani

    Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric M Lynch

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5897-5167
  5. Juri Rappsilber

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5999-1310
  6. Yasushi Hiraoka

    Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9407-8228
  7. Tokuko Haraguchi

    Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3813-6785
  8. Kenneth E Sawin

    Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    ken.sawin@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2607-2219

Funding

Wellcome (94517)

  • Xun X Bao
  • Eric M Lynch
  • Kenneth E Sawin

Japan Society for the Promotion of Science (JP25116006)

  • Tomoko Kojidani
  • Tokuko Haraguchi

The Darwin Trust of Edinburgh

  • Xun X Bao

Wellcome (108504)

  • Christos Spanos
  • Juri Rappsilber

Wellcome (91020)

  • Christos Spanos
  • Juri Rappsilber

Wellcome (203149)

  • Xun X Bao
  • Christos Spanos
  • Eric M Lynch
  • Juri Rappsilber
  • Kenneth E Sawin

Japan Society for the Promotion of Science (JP17H03636)

  • Tomoko Kojidani
  • Tokuko Haraguchi

Japan Society for the Promotion of Science (JP17H01444)

  • Yasushi Hiraoka

Japan Society for the Promotion of Science (JP16H01309)

  • Yasushi Hiraoka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Bao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,412
    views
  • 411
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xun X Bao
  2. Christos Spanos
  3. Tomoko Kojidani
  4. Eric M Lynch
  5. Juri Rappsilber
  6. Yasushi Hiraoka
  7. Tokuko Haraguchi
  8. Kenneth E Sawin
(2018)
Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore
eLife 7:e33465.
https://doi.org/10.7554/eLife.33465

Share this article

https://doi.org/10.7554/eLife.33465

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Rezwana Karim, Wendi Teng ... Hening Lin
    Research Article

    De novo lipogenesis is associated with the development of human diseases such as cancer, diabetes, and obesity. At the core of lipogenesis lies acetyl coenzyme A (CoA), a metabolite that plays a crucial role in fatty acid synthesis. One of the pathways contributing to the production of cytosolic acetyl-CoA is mediated by acetyl-CoA synthetase 2 (ACSS2). Here, we reveal that when cells encounter nutrient stress, particularly a deficiency in amino acids, Sirtuin 2 (SIRT2) catalyzes the deacetylation of ACSS2 at the lysine residue K271. This results in K271 ubiquitination and subsequently proteasomal degradation of ACSS2. Substitution of K271 leads to decreased ubiquitination of ACSS2, increased ACSS2 protein level, and thus increased lipogenesis. Our study uncovers a mechanism that cells employ to efficiently manage lipogenesis during periods of nutrient stress.

    1. Cell Biology
    2. Developmental Biology
    Qian Wang, Hongge Li ... Xin Zhang
    Research Article

    Fibroblast growth factor (FGF) signaling elicits multiple downstream pathways, most notably the Ras/MAPK cascade facilitated by the adaptor protein Grb2. However, the mechanism by which Grb2 is recruited to the FGF signaling complex remains unresolved. Here, we showed that genetic ablation of FGF signaling prevented murine lens induction by disrupting transcriptional regulation and actin cytoskeletal arrangements, which could be reproduced by deleting the juxtamembrane region of the FGF receptor and rescued by Kras activation. Conversely, mutations affecting the Frs2-binding site on the FGF receptor or the deletion of Frs2 and Shp2 primarily impact later stages of lens vesicle development involving lens fiber cell differentiation. Our study further revealed that the loss of Grb2 abolished MAPK signaling, resulting in a profound arrest of lens development. However, removing Grb2’s putative Shp2 dephosphorylation site (Y209) neither produced a detectable phenotype nor impaired MAPK signaling during lens development. Furthermore, the catalytically inactive Shp2 mutation (C459S) only modestly impaired FGF signaling, whereas replacing Shp2’s C-terminal phosphorylation sites (Y542/Y580) previously implicated in Grb2 binding only caused placental defects, perinatal lethality, and reduced lacrimal gland branching without impacting lens development, suggesting that Shp2 only partially mediates Grb2 recruitment. In contrast, we observed that FGF signaling is required for the phosphorylation of the Grb2-binding sites on Shc1 and the deletion of Shc1 exacerbates the lens vesicle defect caused by Frs2 and Shp2 deletion. These findings establish Shc1 as a critical collaborator with Frs2 and Shp2 in targeting Grb2 during FGF signaling.