LRRTM1 underlies synaptic convergence in visual thalamus

  1. Aboozar Monavarfeshani
  2. Gail Stanton
  3. Jonathan Van Name
  4. Kaiwen Su
  5. William A Mills
  6. Kenya Swilling
  7. Alicia Kerr
  8. Natalie A Huebschman
  9. Jianmin Su
  10. Michael A Fox  Is a corresponding author
  1. Virginia Tech Carilion Research Institute, United States
  2. Roanoke Valley Governor School, United States

Abstract

It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision.

Article and author information

Author details

  1. Aboozar Monavarfeshani

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8906-5115
  2. Gail Stanton

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Van Name

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaiwen Su

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William A Mills

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenya Swilling

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alicia Kerr

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Natalie A Huebschman

    Roanoke Valley Governor School, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianmin Su

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael A Fox

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    For correspondence
    mafox1@vtc.vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1649-7782

Funding

National Eye Institute (EY021222)

  • Michael A Fox

Brain and Behavior Research Foundation

  • Michael A Fox

National Eye Institute (EY024712)

  • Michael A Fox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in compliance with National Institutes of Health (NIH) guidelines and protocols and were approved by the Institutional Animal Care and Use Committee (IACUC# 15-137VTCRI, 15-167VTCR and 15-174VTCRI) and Institutional Biosafety Committee (IBC# 15-038) at Virginia Tech.

Copyright

© 2018, Monavarfeshani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,352
    views
  • 287
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aboozar Monavarfeshani
  2. Gail Stanton
  3. Jonathan Van Name
  4. Kaiwen Su
  5. William A Mills
  6. Kenya Swilling
  7. Alicia Kerr
  8. Natalie A Huebschman
  9. Jianmin Su
  10. Michael A Fox
(2018)
LRRTM1 underlies synaptic convergence in visual thalamus
eLife 7:e33498.
https://doi.org/10.7554/eLife.33498

Share this article

https://doi.org/10.7554/eLife.33498

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    Ana Maria Ichim, Harald Barzan ... Raul Cristian Muresan
    Review Article

    Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. Although in the past three decades significant progress has been made to try to understand their functional role, a definitive answer regarding their causal implication in perception, cognition, and behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the major theories regarding their functional role in information processing in the brain, also highlighting critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. Going beyond the functional and therapeutic role of gamma, we propose a third pillar of exploration, where gamma, generated endogenously by cortical circuits, is essential for maintenance of healthy circuit function. We propose that four classes of interneurons, namely those expressing parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) take advantage of endogenous gamma to perform active vasomotor control that maintains homeostasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation of neural activity into vascular responses that are essential for optimal neurometabolic processes. GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a fundamental role. Finally, we propose several critical experiments to test the GAMER hypothesis.