LRRTM1 underlies synaptic convergence in visual thalamus

  1. Aboozar Monavarfeshani
  2. Gail Stanton
  3. Jonathan Van Name
  4. Kaiwen Su
  5. William A Mills
  6. Kenya Swilling
  7. Alicia Kerr
  8. Natalie A Huebschman
  9. Jianmin Su
  10. Michael A Fox  Is a corresponding author
  1. Virginia Tech Carilion Research Institute, United States
  2. Roanoke Valley Governor School, United States

Abstract

It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision.

Article and author information

Author details

  1. Aboozar Monavarfeshani

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8906-5115
  2. Gail Stanton

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Van Name

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaiwen Su

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William A Mills

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenya Swilling

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alicia Kerr

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Natalie A Huebschman

    Roanoke Valley Governor School, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianmin Su

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael A Fox

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    For correspondence
    mafox1@vtc.vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1649-7782

Funding

National Eye Institute (EY021222)

  • Michael A Fox

Brain and Behavior Research Foundation

  • Michael A Fox

National Eye Institute (EY024712)

  • Michael A Fox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All experiments were performed in compliance with National Institutes of Health (NIH) guidelines and protocols and were approved by the Institutional Animal Care and Use Committee (IACUC# 15-137VTCRI, 15-167VTCR and 15-174VTCRI) and Institutional Biosafety Committee (IBC# 15-038) at Virginia Tech.

Version history

  1. Received: November 11, 2017
  2. Accepted: February 8, 2018
  3. Accepted Manuscript published: February 9, 2018 (version 1)
  4. Version of Record published: February 26, 2018 (version 2)

Copyright

© 2018, Monavarfeshani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,320
    views
  • 284
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aboozar Monavarfeshani
  2. Gail Stanton
  3. Jonathan Van Name
  4. Kaiwen Su
  5. William A Mills
  6. Kenya Swilling
  7. Alicia Kerr
  8. Natalie A Huebschman
  9. Jianmin Su
  10. Michael A Fox
(2018)
LRRTM1 underlies synaptic convergence in visual thalamus
eLife 7:e33498.
https://doi.org/10.7554/eLife.33498

Share this article

https://doi.org/10.7554/eLife.33498

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent stimulated dopamine release in male rats, as well as opposite effects of the a6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The a6-selective blocker, a-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this a6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of a6 nAChR and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at a6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Jongkyun Kang, Guodong Huang ... Jie Shen
    Research Article

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson’s disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.