LRRTM1 underlies synaptic convergence in visual thalamus

  1. Aboozar Monavarfeshani
  2. Gail Stanton
  3. Jonathan Van Name
  4. Kaiwen Su
  5. William A Mills
  6. Kenya Swilling
  7. Alicia Kerr
  8. Natalie A Huebschman
  9. Jianmin Su
  10. Michael A Fox  Is a corresponding author
  1. Virginia Tech Carilion Research Institute, United States
  2. Roanoke Valley Governor School, United States

Abstract

It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision.

Article and author information

Author details

  1. Aboozar Monavarfeshani

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8906-5115
  2. Gail Stanton

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Van Name

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kaiwen Su

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William A Mills

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kenya Swilling

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Alicia Kerr

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Natalie A Huebschman

    Roanoke Valley Governor School, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianmin Su

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael A Fox

    Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research Institute, Roanoke, United States
    For correspondence
    mafox1@vtc.vt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1649-7782

Funding

National Eye Institute (EY021222)

  • Michael A Fox

Brain and Behavior Research Foundation

  • Michael A Fox

National Eye Institute (EY024712)

  • Michael A Fox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All experiments were performed in compliance with National Institutes of Health (NIH) guidelines and protocols and were approved by the Institutional Animal Care and Use Committee (IACUC# 15-137VTCRI, 15-167VTCR and 15-174VTCRI) and Institutional Biosafety Committee (IBC# 15-038) at Virginia Tech.

Version history

  1. Received: November 11, 2017
  2. Accepted: February 8, 2018
  3. Accepted Manuscript published: February 9, 2018 (version 1)
  4. Version of Record published: February 26, 2018 (version 2)

Copyright

© 2018, Monavarfeshani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,296
    Page views
  • 283
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aboozar Monavarfeshani
  2. Gail Stanton
  3. Jonathan Van Name
  4. Kaiwen Su
  5. William A Mills
  6. Kenya Swilling
  7. Alicia Kerr
  8. Natalie A Huebschman
  9. Jianmin Su
  10. Michael A Fox
(2018)
LRRTM1 underlies synaptic convergence in visual thalamus
eLife 7:e33498.
https://doi.org/10.7554/eLife.33498

Share this article

https://doi.org/10.7554/eLife.33498

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.