LRRTM1 underlies synaptic convergence in visual thalamus
Abstract
It has long been thought that the mammalian visual system is organized into parallel pathways, with incoming visual signals being parsed in the retina based on feature (e.g. color, contrast and motion) and then transmitted to the brain in unmixed, feature-specific channels. To faithfully convey feature-specific information from retina to cortex, thalamic relay cells must receive inputs from only a small number of functionally similar retinal ganglion cells. However, recent studies challenged this by revealing substantial levels of retinal convergence onto relay cells. Here, we sought to identify mechanisms responsible for the assembly of such convergence. Using an unbiased transcriptomics approach and targeted mutant mice, we discovered a critical role for the synaptic adhesion molecule Leucine Rich Repeat Transmembrane Neuronal 1 (LRRTM1) in the emergence of retinothalamic convergence. Importantly, LRRTM1 mutant mice display impairment in visual behaviors, suggesting a functional role of retinothalamic convergence in vision.
Article and author information
Author details
Funding
National Eye Institute (EY021222)
- Michael A Fox
Brain and Behavior Research Foundation
- Michael A Fox
National Eye Institute (EY024712)
- Michael A Fox
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were performed in compliance with National Institutes of Health (NIH) guidelines and protocols and were approved by the Institutional Animal Care and Use Committee (IACUC# 15-137VTCRI, 15-167VTCR and 15-174VTCRI) and Institutional Biosafety Committee (IBC# 15-038) at Virginia Tech.
Copyright
© 2018, Monavarfeshani et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,379
- views
-
- 293
- downloads
-
- 40
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.