Abstract

Brain-derived neurotrophic factor (Bdnf) transcription is controlled by several promoters, which drive expression of multiple transcripts encoding an identical protein. We previously reported that BDNF derived from promoters I and II is highly expressed in hypothalamus and is critical for regulating aggression in male mice. Here we report that BDNF loss from these promoters causes reduced sexual receptivity and impaired maternal care in female mice, which is concomitant with decreased oxytocin (Oxt) expression during development. We identify a novel link between BDNF signaling, oxytocin, and maternal behavior by demonstrating that ablation of TrkB selectively in OXT neurons partially recapitulates maternal care impairments observed in BDNF-deficient females. Using translating ribosome affinity purification and RNA-sequencing we define a molecular profile for OXT neurons and delineate how BDNF signaling impacts gene pathways critical for structural and functional plasticity. Our findings highlight BDNF as a modulator of sexually-dimorphic hypothalamic circuits that govern female-typical behaviors.

Data availability

All RNA-seq analysis code and source data are available on the GitHub repository: https://github.com/LieberInstitute/oxt_trap_seq/. Raw sequencing reads are available on SRA under accession code SRP157978.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kristen R Maynard

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John W Hobbs

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. BaDoi N Phan

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6331-5980
  4. Amolika Gupta

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sumita Rajpurohit

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Courtney Williams

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nina Rajpurohit

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Joo Heon Shin

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Andrew E Jaffe

    Lieber Institute for Brain Development, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Keri Martinowich

    Lieber Institute for Brain Development, Baltimore, United States
    For correspondence
    keri.martinowich@libd.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5237-0789

Funding

National Institute of Mental Health (T32MH01533037)

  • Kristen R Maynard

Lieber Institute for Brain Development

  • Keri Martinowich

National Institute of Mental Health (RO1MH105592)

  • Keri Martinowich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lisa M Monteggia, UT Southwestern Medical Center, United States

Ethics

Animal experimentation: All experimental animal procedures were approved by the Sobran Biosciences Institutional Animal Care and Use Committee (IACUC) under protocol number LIE-004-2015.

Version history

  1. Received: November 18, 2017
  2. Accepted: September 2, 2018
  3. Accepted Manuscript published: September 7, 2018 (version 1)
  4. Version of Record published: September 12, 2018 (version 2)

Copyright

© 2018, Maynard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,578
    views
  • 413
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kristen R Maynard
  2. John W Hobbs
  3. BaDoi N Phan
  4. Amolika Gupta
  5. Sumita Rajpurohit
  6. Courtney Williams
  7. Nina Rajpurohit
  8. Joo Heon Shin
  9. Andrew E Jaffe
  10. Keri Martinowich
(2018)
BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior
eLife 7:e33676.
https://doi.org/10.7554/eLife.33676

Share this article

https://doi.org/10.7554/eLife.33676

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.

    1. Neuroscience
    Flavio J Schmidig, Simon Ruch, Katharina Henke
    Research Article

    We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words’ linguistic processing raised neural complexity. The words’ semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.