Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals

  1. Justin D Yao  Is a corresponding author
  2. Dan H Sanes  Is a corresponding author
  1. New York University, United States

Abstract

Sensory deprivation during development induces lifelong changes to central nervous system function that are associated with perceptual impairments. However, the relationship between neural and behavioral deficits is uncertain due to a lack of simultaneous measurements during task performance. Therefore, we telemetrically recorded from auditory cortex neurons in gerbils reared with developmental conductive hearing loss as they performed an auditory task in which rapid fluctuations in amplitude are detected. These data were compared to a measure of auditory brainstem temporal processing from each animal. We found that developmental HL diminished behavioral performance, but did not alter brainstem temporal processing. However, the simultaneous assessment of neural and behavioral processing revealed that perceptual deficits were associated with a degraded cortical population code that could be explained by greater trial-to-trial response variability. Our findings suggest that the perceptual limitations that attend early hearing loss are best explained by an encoding deficit in auditory cortex.

Data availability

MATLAB files and code are available at the New York University Box (https://nyu.box.com/v/Yao-Sanes-eLife-2018).

Article and author information

Author details

  1. Justin D Yao

    Center for Neural Science, New York University, New York, United States
    For correspondence
    jdyao@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8762-9044
  2. Dan H Sanes

    Center for Neural Science, New York University, New York, United States
    For correspondence
    dhs1@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Deafness and Other Communication Disorders (F32 DC016508)

  • Justin D Yao

National Institute on Deafness and Other Communication Disorders (R01 DC014656)

  • Dan H Sanes

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures of this study were approved by the Institutional Animal Care and Use Committee at New York University and followed guidelines established by the National Institutes of Health for the care and use of laboratory animals. All conductive hearing loss surgeries were performed under a surgical level of anesthesia induced with methoxyflurane. All auditory brainstem response recordings were performed under ketamine and pentobarbital. All electrode implant surgeries were performed under isoflurane/O2. Every effort was made to minimize suffering.

Copyright

© 2018, Yao & Sanes

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,832
    views
  • 196
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin D Yao
  2. Dan H Sanes
(2018)
Developmental deprivation-induced perceptual and cortical processing deficits in awake-behaving animals
eLife 7:e33891.
https://doi.org/10.7554/eLife.33891

Share this article

https://doi.org/10.7554/eLife.33891

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Neuroscience
    Takashi Yamamoto, Kayoko Ueji ... Shinya Ugawa
    Research Article

    The concept of ‘kokumi’, which refers to an enhanced and more delicious flavor of food, has recently generated considerable interest in food science. However, kokumi has not been well studied in gustatory physiology, and the underlying neuroscientific mechanisms remain largely unexplored. Our previous research demonstrated that ornithine (L-ornithine), which is abundant in shijimi clams, enhanced taste preferences in mice. The present study aimed to build on these findings and investigate the mechanisms responsible for kokumi in rats. In two-bottle preference tests, the addition of ornithine, at a low concentration that did not increase the favorability of this substance alone, enhanced the animals’ preferences for umami, sweet, fatty, salty, and bitter solutions, with the intake of monosodium glutamate showing the most significant increase. Additionally, a mixture of umami and ornithine synergistically induced significant responses in the chorda tympani nerve, which transmits taste information to the brain from the anterior part of the tongue. The observed preference enhancement and increase in taste-nerve response were abolished by antagonists of the G-protein-coupled receptor family C group 6 subtype A (GPRC6A). Furthermore, immunohistochemical analysis indicated that GPRC6A was expressed in a subset of type II taste cells in rat fungiform papillae. These results provide new insights into flavor-enhancement mechanisms, confirming that ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor.