Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with DTI MRI

Abstract

The glymphatics system describes a CSF-mediated clearance pathway for the removal of potentially harmful molecules, such as amyloid beta, from the brain. As such, its components may represent new therapeutic targets to alleviate aberrant protein accumulation that defines the most prevalent neurodegenerative conditions. Currently, however, the absence of any non-invasive measurement technique prohibits detailed understanding of glymphatic function in the human brain and in turn, it's role in pathology. Here, we present the first non-invasive technique for the assessment of glymphatic inflow by using an ultra-long echo time, low b-value, multi-direction diffusion weighted MRI sequence to assess perivascular fluid movement (which represents a critical component of the glymphatic pathway) in the rat brain. This novel, quantitative and non-invasive approach may represent a valuable biomarker of CSF-mediated brain clearance, working towards the clinical need for reliable and early diagnostic indicators of neurodegenerative conditions such as Alzheimer's disease.

Data availability

All the data has been deposited on Dryad (https://dx.doi.org/10.5061/dryad.121hs31).

The following data sets were generated

Article and author information

Author details

  1. Ian F Harrison

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1250-4911
  2. Bernard Siow

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Aisha B Akilo

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Phoebe G Evans

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ozama Ismail

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Yolanda Ohene

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Payam Nahavandi

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. David L Thomas

    Department of Brain Repair and Rehabilitation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1491-1641
  9. Mark F Lythgoe

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jack A Wells

    UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
    For correspondence
    jack.wells@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4171-3539

Funding

Wellcome (Sir Henry Dale Fellowship 204624/Z/16/Z)

  • Phoebe G Evans
  • Jack A Wells

Royal Society (Sir Henry Dale Fellowship 204624/Z/16/Z)

  • Phoebe G Evans
  • Jack A Wells

Engineering and Physical Sciences Research Council (EP/N034864/1)

  • Ian F Harrison
  • David L Thomas
  • Mark F Lythgoe

National Institute for Health Research

  • Mark F Lythgoe

Medical Research Council (MR/K026739/1)

  • Mark F Lythgoe

Department of Health

  • Mark F Lythgoe

Leonard Wolfson Experimental Neurology Centre (PR/ylr/18575)

  • David L Thomas

Engineering and Physical Sciences Research Council (UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1)

  • Yolanda Ohene
  • Payam Nahavandi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thomas W. Okell

Ethics

Animal experimentation: All experiments were performed in accordance with the UK Home Office's Animals (Scientific Procedures) Act (1986). All procedures were minimally invasive and with a relatively high level of isoflurane for deep anesthesia throughout imaging.

Version history

  1. Received: December 5, 2017
  2. Accepted: July 30, 2018
  3. Accepted Manuscript published: July 31, 2018 (version 1)
  4. Version of Record published: August 30, 2018 (version 2)

Copyright

© 2018, Harrison et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,371
    views
  • 968
    downloads
  • 104
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian F Harrison
  2. Bernard Siow
  3. Aisha B Akilo
  4. Phoebe G Evans
  5. Ozama Ismail
  6. Yolanda Ohene
  7. Payam Nahavandi
  8. David L Thomas
  9. Mark F Lythgoe
  10. Jack A Wells
(2018)
Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with DTI MRI
eLife 7:e34028.
https://doi.org/10.7554/eLife.34028

Share this article

https://doi.org/10.7554/eLife.34028

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.