Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity
Abstract
Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer's patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17-24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders.
Data availability
-
RNA-Sequencing data - acute DBSPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE107357).
-
Whole-Genome bisulfite sequencingPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE107383).
-
RNA-Sequencing data - chronic DBSPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE111703).
-
Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE24095).
-
Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primatesPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE39697).
-
Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selectionPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE13539).
-
Neuronal activity modifies the DNA methylation landscape in the adult brain.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE30493).
-
DNA methylation changes in plasticity genes accompany the formation and maintenance of memoryPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE74971).
-
Widespread transcription at neuronal activity-regulated enhancersPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE21161).
-
Nuclear RNA-seq of single neurons reveals molecular signatures of activation.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE77067).
-
Activity-dependent regulation of inhibitory synapse development by Npas4.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE11261).
-
Identification of activity-dependent gene expression profiles reveals specific subsets of genes induced by different routes of Ca(2+) entry in cultured rat cortical neurons.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE6254).
-
Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE61887).
-
Global state measures of the dentate gyrus gene expression system predict antidepressant-sensitive behaviors.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE43261).
-
Transcriptome profile reveals AMPA receptor dysfunction in the hippocampus of the Rsk2-knockout mice, an animal model of Coffin-Lowry syndrome.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE22137).
-
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mousePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE80312).
Article and author information
Author details
Funding
National Institutes of Health (5R01NS057819)
- Huda Y Zoghbi
Howard Hughes Medical Institute (HHMI Investigator)
- Huda Y Zoghbi
Robert and Janice McNair Foundation (Student Scholar)
- Amy E Pohodich
Baylor Research Advocates for Student Scientists (Student Scholar)
- Amy E Pohodich
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All research and animal care procedures were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee (approved protocols: AN-1013 and AN-5585). All surgery was performed under isofluorane anesthesia, and every effort was made to minimize pain and suffering.
Copyright
© 2018, Pohodich et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,480
- views
-
- 611
- downloads
-
- 48
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.
-
- Neuroscience
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.