Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity

  1. Amy E Pohodich
  2. Hari Yalamanchili
  3. Ayush T Raman
  4. Ying-Wooi Wan
  5. Michael Gundry
  6. Shuang Hao
  7. Haijing Jin
  8. Jianrong Tang
  9. Zhandong Liu
  10. Huda Y Zoghbi  Is a corresponding author
  1. Baylor College of Medicine, United States
  2. Texas Children's Hospital, United States

Abstract

Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer's patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17-24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders.

Data availability

The following data sets were generated
    1. Pohodich AE
    2. Zoghbi HY
    (2018) RNA-Sequencing data - acute DBS
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE107357).
    1. Pohodich AE
    2. Zoghbi HY
    (2018) Whole-Genome bisulfite sequencing
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE107383).
    1. Pohodich AE
    2. Zoghbi HY
    (2018) RNA-Sequencing data - chronic DBS
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE111703).
The following previously published data sets were used

Article and author information

Author details

  1. Amy E Pohodich

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  2. Hari Yalamanchili

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  3. Ayush T Raman

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  4. Ying-Wooi Wan

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  5. Michael Gundry

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Shuang Hao

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  7. Haijing Jin

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  8. Jianrong Tang

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  9. Zhandong Liu

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    Competing interests
    No competing interests declared.
  10. Huda Y Zoghbi

    Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States
    For correspondence
    hzoghbi@bcm.edu
    Competing interests
    Huda Y Zoghbi, Senior editor, eLifeis one of the co-holders of U.S. Patent 6,709,817 Method of Screening Rett Syndrome by Detecting a Mutation in MECP2, March 23, 2004.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0700-3349

Funding

National Institutes of Health (5R01NS057819)

  • Huda Y Zoghbi

Howard Hughes Medical Institute (HHMI Investigator)

  • Huda Y Zoghbi

Robert and Janice McNair Foundation (Student Scholar)

  • Amy E Pohodich

Baylor Research Advocates for Student Scientists (Student Scholar)

  • Amy E Pohodich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All research and animal care procedures were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee (approved protocols: AN-1013 and AN-5585). All surgery was performed under isofluorane anesthesia, and every effort was made to minimize pain and suffering.

Copyright

© 2018, Pohodich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,415
    views
  • 601
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy E Pohodich
  2. Hari Yalamanchili
  3. Ayush T Raman
  4. Ying-Wooi Wan
  5. Michael Gundry
  6. Shuang Hao
  7. Haijing Jin
  8. Jianrong Tang
  9. Zhandong Liu
  10. Huda Y Zoghbi
(2018)
Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity
eLife 7:e34031.
https://doi.org/10.7554/eLife.34031

Share this article

https://doi.org/10.7554/eLife.34031

Further reading

    1. Neuroscience
    Rongxin Fang, Aaron Halpern ... Xiaowei Zhuang
    Tools and Resources

    Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.