Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity
Abstract
Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer's patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17-24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders.
Data availability
-
RNA-Sequencing data - acute DBSPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE107357).
-
Whole-Genome bisulfite sequencingPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE107383).
-
RNA-Sequencing data - chronic DBSPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE111703).
-
Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE24095).
-
Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primatesPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE39697).
-
Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selectionPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE13539).
-
Neuronal activity modifies the DNA methylation landscape in the adult brain.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE30493).
-
DNA methylation changes in plasticity genes accompany the formation and maintenance of memoryPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE74971).
-
Widespread transcription at neuronal activity-regulated enhancersPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE21161).
-
Nuclear RNA-seq of single neurons reveals molecular signatures of activation.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE77067).
-
Activity-dependent regulation of inhibitory synapse development by Npas4.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE11261).
-
Identification of activity-dependent gene expression profiles reveals specific subsets of genes induced by different routes of Ca(2+) entry in cultured rat cortical neurons.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE6254).
-
Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE61887).
-
Global state measures of the dentate gyrus gene expression system predict antidepressant-sensitive behaviors.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE43261).
-
Transcriptome profile reveals AMPA receptor dysfunction in the hippocampus of the Rsk2-knockout mice, an animal model of Coffin-Lowry syndrome.Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE22137).
-
Ptchd1 deficiency induces excitatory synaptic and cognitive dysfunctions in mousePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE80312).
Article and author information
Author details
Funding
National Institutes of Health (5R01NS057819)
- Huda Y Zoghbi
Howard Hughes Medical Institute (HHMI Investigator)
- Huda Y Zoghbi
Robert and Janice McNair Foundation (Student Scholar)
- Amy E Pohodich
Baylor Research Advocates for Student Scientists (Student Scholar)
- Amy E Pohodich
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All research and animal care procedures were approved by the Baylor College of Medicine Institutional Animal Care and Use Committee (approved protocols: AN-1013 and AN-5585). All surgery was performed under isofluorane anesthesia, and every effort was made to minimize pain and suffering.
Copyright
© 2018, Pohodich et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,415
- views
-
- 601
- downloads
-
- 47
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples. We demonstrated 3D MERFISH on mouse brain tissue sections of up to 200 µm thickness with high detection efficiency and accuracy. We anticipate that 3D thick-tissue MERFISH imaging will broaden the scope of questions that can be addressed by spatial genomics.
-
- Neuroscience
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.