Motor thalamus supports striatum-driven reinforcement
Abstract
Reinforcement has long been thought to require striatal synaptic plasticity. Indeed, direct striatal manipulations such as self-stimulation of direct-pathway projection neurons (dMSNs) are sufficient to induce reinforcement within minutes. However, it's unclear what role, if any, is played by downstream circuitry. Here, we used dMSN self-stimulation in mice as a model for striatum-driven reinforcement and mapped the underlying circuitry across multiple basal ganglia nuclei and output targets. We found that mimicking the effects of dMSN activation on downstream circuitry, through optogenetic suppression of basal ganglia output nucleus substantia nigra reticulata (SNr) or activation of SNr targets in the brainstem or thalamus, was also sufficient to drive rapid reinforcement. Remarkably, silencing motor thalamus-but not other selected targets of SNr-was the only manipulation that reduced dMSN-driven reinforcement. Together, these results point to an unexpected role for basal ganglia output to motor thalamus in striatum-driven reinforcement.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Swiss National Science Foundation
- Arnaud L Lalive
National Institutes of Health (U01 NS094342)
- Anatol C Kreitzer
National Institutes of Health (P01 DA010154)
- Anatol C Kreitzer
National Institutes of Health (R01 NS064984)
- Anatol C Kreitzer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (AN144957) of the University of California, San Francisco. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.
Copyright
© 2018, Lalive et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,480
- views
-
- 704
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.