1. Neuroscience
Download icon

Differential 3' processing of specific transcripts expands regulatory and protein diversity across neuronal cell types

  1. Saša Jereb
  2. Hun-Way Hwang
  3. Eric Van Otterloo
  4. Eve-Ellen Govek
  5. John J Fak
  6. Yuan Yuan
  7. Mary E Hatten
  8. Robert B Darnell  Is a corresponding author
  1. The Rockefeller University, United States
  2. University of Colorado, United States
Research Article
  • Cited 12
  • Views 2,134
  • Annotations
Cite this article as: eLife 2018;7:e34042 doi: 10.7554/eLife.34042

Abstract

Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3'UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3'UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3'TR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Saša Jereb

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6862-4475
  2. Hun-Way Hwang

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eric Van Otterloo

    Department of Craniofacial Biology, University of Colorado, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eve-Ellen Govek

    Laboratory of Developmental Neurobiology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John J Fak

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuan Yuan

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2718-8301
  7. Mary E Hatten

    Laboratory of Developmental Neurobiology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9059-660X
  8. Robert B Darnell

    Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, United States
    For correspondence
    darnelr@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5134-8088

Funding

National Institutes of Health (NS034389)

  • Robert B Darnell

Howard Hughes Medical Institute

  • Robert B Darnell

Simons Foundation (SFARI 240432)

  • Robert B Darnell

National Institute of Dental and Craniofacial Research (K99DE026823)

  • Eric Van Otterloo

National Institutes of Health (NS081706)

  • Robert B Darnell

National Institutes of Health (NS097404)

  • Robert B Darnell

National Institutes of Health (1UM1HG008901)

  • Robert B Darnell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were maintained in an AAALAC-approved animal facility and all procedures were performed in accordance with IACUC guidelines (protocol number 17013).

Reviewing Editor

  1. Bin Tian, Rutgers University New Jersey Medical School, United States

Publication history

  1. Received: December 12, 2017
  2. Accepted: March 20, 2018
  3. Accepted Manuscript published: March 26, 2018 (version 1)
  4. Version of Record published: April 13, 2018 (version 2)

Copyright

© 2018, Jereb et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,134
    Page views
  • 378
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Debora Fusca, Peter Kloppenburg
    Research Article

    Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.

    1. Neuroscience
    Wanhui Sheng et al.
    Research Article Updated

    Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here, we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes; however, activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.