Hepatic NF-kB-inducing kinase (NIK) suppresses mouse liver regeneration in acute and chronic liver disease

  1. Yi Xiong
  2. Adriana Souza Torsoni
  3. Feihua Wu
  4. Hong Shen
  5. Yan Liu
  6. Xiao Zhong
  7. Mark J Canet
  8. Yatrik M Shah
  9. M Bishr Omary
  10. Yong Liu
  11. Liangyou Rui  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. Wuhan University, China

Abstract

Reparative hepatocyte replication is impaired in chronic liver disease, contributing to disease progression; however, the underlying mechanism remains elusive. Here, we identify Map3k14 (also known as NIK) and its substrate Chuk (also called IKKα) as unrecognized suppressors of hepatocyte replication. Chronic liver disease is associated with aberrant activation of hepatic NIK pathways. We found that hepatocyte-specific deletion of Map3k14 or Chuk substantially accelerated mouse hepatocyte proliferation and liver regeneration following partial-hepatectomy. Hepatotoxin treatment or high fat diet feeding inhibited the ability of partial-hepatectomy to stimulate hepatocyte replication; remarkably, inactivation of hepatic NIK markedly increased reparative hepatocyte proliferation under these liver disease conditions. Mechanistically, NIK and IKKα suppressed the mitogenic JAK2/STAT3 pathway, thereby inhibiting cell cycle progression. Our data suggest that hepatic NIK and IKKα act as rheostats for liver regeneration by restraining overgrowth. Pathological activation of hepatic NIK or IKKα likely blocks hepatocyte replication, contributing to liver disease progression.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yi Xiong

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adriana Souza Torsoni

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Feihua Wu

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hong Shen

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan Liu

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiao Zhong

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark J Canet

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yatrik M Shah

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. M Bishr Omary

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yong Liu

    The Institute for Advanced Studies, Wuhan University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Liangyou Rui

    Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    ruily@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8433-8137

Funding

National Institute of Diabetes and Digestive and Kidney Diseases (DK091591)

  • Liangyou Rui

National Institute of Diabetes and Digestive and Kidney Diseases (DK114220)

  • Liangyou Rui

National Institute of Diabetes and Digestive and Kidney Diseases (DK115646)

  • Liangyou Rui

National Institute of Diabetes and Digestive and Kidney Diseases (DK47918)

  • M Bishr Omary

National Natural Science Foundation of China (81420108006)

  • Yong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hao Zhu, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (PRO00006638) of the University of Michigan. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Michigan.

Version history

  1. Received: December 6, 2017
  2. Accepted: July 28, 2018
  3. Accepted Manuscript published: August 2, 2018 (version 1)
  4. Version of Record published: August 6, 2018 (version 2)

Copyright

© 2018, Xiong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,123
    Page views
  • 377
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Xiong
  2. Adriana Souza Torsoni
  3. Feihua Wu
  4. Hong Shen
  5. Yan Liu
  6. Xiao Zhong
  7. Mark J Canet
  8. Yatrik M Shah
  9. M Bishr Omary
  10. Yong Liu
  11. Liangyou Rui
(2018)
Hepatic NF-kB-inducing kinase (NIK) suppresses mouse liver regeneration in acute and chronic liver disease
eLife 7:e34152.
https://doi.org/10.7554/eLife.34152

Share this article

https://doi.org/10.7554/eLife.34152

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.