Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact

  1. Thomas A Ray
  2. Suva Roy
  3. Christopher Kozlowski
  4. Jingjing Wang
  5. Jon Cafaro
  6. Samuel W Hulbert
  7. Christopher V E Wright
  8. Greg D Field
  9. Jeremy N Kay  Is a corresponding author
  1. Duke University School of Medicine, United States
  2. Vanderbilt University School of Medicine, United States

Abstract

A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially-migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism's importance in forming circuit-specific sublayers.

Article and author information

Author details

  1. Thomas A Ray

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Suva Roy

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher Kozlowski

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingjing Wang

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jon Cafaro

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Samuel W Hulbert

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0369-0150
  7. Christopher V E Wright

    Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9260-4009
  8. Greg D Field

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeremy N Kay

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    For correspondence
    jeremy.kay@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6145-1604

Funding

National Eye Institute (EY024694)

  • Jeremy N Kay

National Eye Institute (EY5722 to Duke University)

  • Thomas A Ray
  • Suva Roy
  • Christopher Kozlowski
  • Jingjing Wang
  • Jon Cafaro
  • Samuel W Hulbert
  • Greg D Field
  • Jeremy N Kay

Pew Charitable Trusts

  • Jeremy N Kay

E. Matilda Ziegler Foundation for the Blind

  • Jeremy N Kay

McKnight Endowment Fund for Neuroscience

  • Jeremy N Kay

Alfred P. Sloan Foundation

  • Jeremy N Kay

Whitehall Foundation

  • Greg D Field

Research to Prevent Blindness (Unrestricted grant to Duke University)

  • Thomas A Ray
  • Suva Roy
  • Christopher Kozlowski
  • Jingjing Wang
  • Jon Cafaro
  • Greg D Field
  • Jeremy N Kay

National Eye Institute (EY026344)

  • Thomas A Ray

National Eye Institute (EY024567)

  • Greg D Field

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeremy Nathans, Johns Hopkins University School of Medicine, United States

Ethics

Animal experimentation: All animal experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Duke University (protocol A005-16-01).

Version history

  1. Received: December 11, 2017
  2. Accepted: March 29, 2018
  3. Accepted Manuscript published: April 3, 2018 (version 1)
  4. Version of Record published: May 2, 2018 (version 2)

Copyright

© 2018, Ray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,607
    views
  • 558
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas A Ray
  2. Suva Roy
  3. Christopher Kozlowski
  4. Jingjing Wang
  5. Jon Cafaro
  6. Samuel W Hulbert
  7. Christopher V E Wright
  8. Greg D Field
  9. Jeremy N Kay
(2018)
Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact
eLife 7:e34241.
https://doi.org/10.7554/eLife.34241

Share this article

https://doi.org/10.7554/eLife.34241

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.