Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact

  1. Thomas A Ray
  2. Suva Roy
  3. Christopher Kozlowski
  4. Jingjing Wang
  5. Jon Cafaro
  6. Samuel W Hulbert
  7. Christopher V E Wright
  8. Greg D Field
  9. Jeremy N Kay  Is a corresponding author
  1. Duke University School of Medicine, United States
  2. Vanderbilt University School of Medicine, United States

Abstract

A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially-migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism's importance in forming circuit-specific sublayers.

Article and author information

Author details

  1. Thomas A Ray

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Suva Roy

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher Kozlowski

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingjing Wang

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jon Cafaro

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Samuel W Hulbert

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0369-0150
  7. Christopher V E Wright

    Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9260-4009
  8. Greg D Field

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jeremy N Kay

    Department of Neurobiology, Duke University School of Medicine, Durham, United States
    For correspondence
    jeremy.kay@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6145-1604

Funding

National Eye Institute (EY024694)

  • Jeremy N Kay

National Eye Institute (EY5722 to Duke University)

  • Thomas A Ray
  • Suva Roy
  • Christopher Kozlowski
  • Jingjing Wang
  • Jon Cafaro
  • Samuel W Hulbert
  • Greg D Field
  • Jeremy N Kay

Pew Charitable Trusts

  • Jeremy N Kay

E. Matilda Ziegler Foundation for the Blind

  • Jeremy N Kay

McKnight Endowment Fund for Neuroscience

  • Jeremy N Kay

Alfred P. Sloan Foundation

  • Jeremy N Kay

Whitehall Foundation

  • Greg D Field

Research to Prevent Blindness (Unrestricted grant to Duke University)

  • Thomas A Ray
  • Suva Roy
  • Christopher Kozlowski
  • Jingjing Wang
  • Jon Cafaro
  • Greg D Field
  • Jeremy N Kay

National Eye Institute (EY026344)

  • Thomas A Ray

National Eye Institute (EY024567)

  • Greg D Field

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Duke University (protocol A005-16-01).

Copyright

© 2018, Ray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,778
    views
  • 574
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas A Ray
  2. Suva Roy
  3. Christopher Kozlowski
  4. Jingjing Wang
  5. Jon Cafaro
  6. Samuel W Hulbert
  7. Christopher V E Wright
  8. Greg D Field
  9. Jeremy N Kay
(2018)
Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact
eLife 7:e34241.
https://doi.org/10.7554/eLife.34241

Share this article

https://doi.org/10.7554/eLife.34241

Further reading

    1. Neuroscience
    Lina María Jaime Tobón, Tobias Moser
    Research Article

    Neural diversity can expand the encoding capacity of a circuitry. A striking example of diverse structure and function is presented by the afferent synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in the cochlea. Presynaptic active zones at the pillar IHC side activate at lower IHC potentials than those of the modiolar side that have more presynaptic Ca2+ channels. The postsynaptic SGNs differ in their spontaneous firing rates, sound thresholds, and operating ranges. While a causal relationship between synaptic heterogeneity and neural response diversity seems likely, experimental evidence linking synaptic and SGN physiology has remained difficult to obtain. Here, we aimed at bridging this gap by ex vivo paired recordings of murine IHCs and postsynaptic SGN boutons with stimuli and conditions aimed to mimic those of in vivo SGN characterization. Synapses with high spontaneous rate of release (SR) were found predominantly on the pillar side of the IHC. These high SR synapses had larger and more temporally compact spontaneous EPSCs, lower voltage thresholds, tighter coupling of Ca2+ channels and vesicular release sites, shorter response latencies, and higher initial release rates. This study indicates that synaptic heterogeneity in IHCs directly contributes to the diversity of spontaneous and sound-evoked firing of SGNs.

    1. Neuroscience
    Mina Mišić, Noah Lee ... Herta Flor
    Research Article

    Chronic back pain (CBP) is a global health concern with significant societal and economic burden. While various predictors of back pain chronicity have been proposed, including demographic and psychosocial factors, neuroimaging studies have pointed to brain characteristics as predictors of CBP. However, large-scale, multisite validation of these predictors is currently lacking. In two independent longitudinal studies, we examined white matter diffusion imaging data and pain characteristics in patients with subacute back pain (SBP) over 6- and 12-month periods. Diffusion data from individuals with CBP and healthy controls (HC) were analyzed for comparison. Whole-brain tract-based spatial statistics analyses revealed that a cluster in the right superior longitudinal fasciculus (SLF) tract had larger fractional anisotropy (FA) values in patients who recovered (SBPr) compared to those with persistent pain (SBPp), and predicted changes in pain severity. The SLF FA values accurately classified patients at baseline and follow-up in a third publicly available dataset (Area under the Receiver Operating Curve ~0.70). Notably, patients who recovered had FA values larger than those of HC suggesting a potential role of SLF integrity in resilience to CBP. Structural connectivity-based models also classified SBPp and SBPr patients from the three data sets (validation accuracy 67%). Our results validate the right SLF as a robust predictor of CBP development, with potential for clinical translation. Cognitive and behavioral processes dependent on the right SLF, such as proprioception and visuospatial attention, should be analyzed in subacute stages as they could prove important for back pain chronicity.