Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact
Abstract
A common strategy by which developing neurons locate their synaptic partners is through projections to circuit-specific neuropil sublayers. Once established, sublayers serve as a substrate for selective synapse formation, but how sublayers arise during neurodevelopment remains unknown. Here we identify the earliest events that initiate formation of the direction-selective circuit in the inner plexiform layer of mouse retina. We demonstrate that radially-migrating newborn starburst amacrine cells establish homotypic contacts on arrival at the inner retina. These contacts, mediated by the cell-surface protein MEGF10, trigger neuropil innervation resulting in generation of two sublayers comprising starburst-cell dendrites. This dendritic scaffold then recruits projections from circuit partners. Abolishing MEGF10-mediated contacts profoundly delays and ultimately disrupts sublayer formation, leading to broader direction tuning and weaker direction-selectivity in retinal ganglion cells. Our findings reveal a mechanism by which differentiating neurons transition from migratory to mature morphology, and highlight this mechanism's importance in forming circuit-specific sublayers.
Article and author information
Author details
Funding
National Eye Institute (EY024694)
- Jeremy N Kay
National Eye Institute (EY5722 to Duke University)
- Thomas A Ray
- Suva Roy
- Christopher Kozlowski
- Jingjing Wang
- Jon Cafaro
- Samuel W Hulbert
- Greg D Field
- Jeremy N Kay
Pew Charitable Trusts
- Jeremy N Kay
E. Matilda Ziegler Foundation for the Blind
- Jeremy N Kay
McKnight Endowment Fund for Neuroscience
- Jeremy N Kay
Alfred P. Sloan Foundation
- Jeremy N Kay
Whitehall Foundation
- Greg D Field
Research to Prevent Blindness (Unrestricted grant to Duke University)
- Thomas A Ray
- Suva Roy
- Christopher Kozlowski
- Jingjing Wang
- Jon Cafaro
- Greg D Field
- Jeremy N Kay
National Eye Institute (EY026344)
- Thomas A Ray
National Eye Institute (EY024567)
- Greg D Field
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of Duke University (protocol A005-16-01).
Copyright
© 2018, Ray et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,853
- views
-
- 581
- downloads
-
- 55
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.