VEGF-C promotes the development of lymphatics in bone and bone loss

  1. Devon Hominick
  2. Asitha Silva
  3. Noor Khurana
  4. Ying Liu
  5. Paul C Dechow
  6. Jian Q Feng
  7. Bronislaw Pytowski  Is a corresponding author
  8. Joseph M Rutkowski
  9. Kari Alitalo
  10. Michael T Dellinger  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. Texas A&M College of Dentistry, United States
  3. Eli Lilly and Company, United States
  4. Texas A&M College of Medicine, United States
  5. University of Helsinki, Finland

Abstract

Patients with Gorham-Stout disease (GSD) have lymphatic vessels in their bones and their bones gradually disappear. Here we report that mice that overexpress VEGF-C in bone exhibit a phenotype that resembles GSD. To drive VEGF-C expression in bone, we generated Osx-tTA;TetO-Vegfc double-transgenic mice. In contrast to Osx-tTA mice, Osx-tTA;TetO-Vegfc mice developed lymphatics in their bones. We found that inhibition of VEGFR3, but not VEGFR2, prevented the formation of bone lymphatics in Osx-tTA;TetO-Vegfc mice. Radiological and histological analysis revealed that bones from Osx-tTA;TetO-Vegfc mice were more porous and had more osteoclasts than bones from Osx-tTA mice. Importantly, we found that bone loss in Osx-tTA;TetO-Vegfc mice could be attenuated by an osteoclast inhibitor. We also discovered that the mutant phenotype of Osx-tTA;TetO-Vegfc mice could be reversed by inhibiting the expression of VEGF-C. Taken together, our results indicate that expression of VEGF-C in bone is sufficient to induce the pathologic hallmarks of GSD in mice.

Article and author information

Author details

  1. Devon Hominick

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Asitha Silva

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Noor Khurana

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Ying Liu

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Paul C Dechow

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Jian Q Feng

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Bronislaw Pytowski

    Eli Lilly and Company, New York, United States
    For correspondence
    bronek.pytowski@gmail.com
    Competing interests
    Bronislaw Pytowski, During preparation of the manuscript, B. Pytowski was an employee of Eli Lilly and continues to hold stock in the company.
  8. Joseph M Rutkowski

    Department of Medical Physiology, Texas A&M College of Medicine, College Station, United States
    Competing interests
    No competing interests declared.
  9. Kari Alitalo

    Wihuri Research Institute, University of Helsinki, Helsinki, Finland
    Competing interests
    Kari Alitalo, Reviewing editor, eLife.
  10. Michael T Dellinger

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.dellinger@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3315-4239

Funding

The Lymphatic Malformation Institute (Research Grant)

  • Michael T Dellinger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments described in this manuscript were carried out in accordance with animal protocols (2014-0031 and 2016-101510) approved by the Institutional Animal Care and Use Committee of UT Southwestern Medical Center.

Copyright

© 2018, Hominick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,083
    views
  • 432
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Devon Hominick
  2. Asitha Silva
  3. Noor Khurana
  4. Ying Liu
  5. Paul C Dechow
  6. Jian Q Feng
  7. Bronislaw Pytowski
  8. Joseph M Rutkowski
  9. Kari Alitalo
  10. Michael T Dellinger
(2018)
VEGF-C promotes the development of lymphatics in bone and bone loss
eLife 7:e34323.
https://doi.org/10.7554/eLife.34323

Share this article

https://doi.org/10.7554/eLife.34323

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Morgane Djebar, Isabelle Anselme ... Christine Vesque
    Research Article

    Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Laura Massoz, David Bergemann ... Isabelle Manfroid
    Research Article

    Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.