VEGF-C promotes the development of lymphatics in bone and bone loss

  1. Devon Hominick
  2. Asitha Silva
  3. Noor Khurana
  4. Ying Liu
  5. Paul C Dechow
  6. Jian Q Feng
  7. Bronislaw Pytowski  Is a corresponding author
  8. Joseph M Rutkowski
  9. Kari Alitalo
  10. Michael T Dellinger  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. Texas A&M College of Dentistry, United States
  3. Eli Lilly and Company, United States
  4. Texas A&M College of Medicine, United States
  5. University of Helsinki, Finland

Abstract

Patients with Gorham-Stout disease (GSD) have lymphatic vessels in their bones and their bones gradually disappear. Here we report that mice that overexpress VEGF-C in bone exhibit a phenotype that resembles GSD. To drive VEGF-C expression in bone, we generated Osx-tTA;TetO-Vegfc double-transgenic mice. In contrast to Osx-tTA mice, Osx-tTA;TetO-Vegfc mice developed lymphatics in their bones. We found that inhibition of VEGFR3, but not VEGFR2, prevented the formation of bone lymphatics in Osx-tTA;TetO-Vegfc mice. Radiological and histological analysis revealed that bones from Osx-tTA;TetO-Vegfc mice were more porous and had more osteoclasts than bones from Osx-tTA mice. Importantly, we found that bone loss in Osx-tTA;TetO-Vegfc mice could be attenuated by an osteoclast inhibitor. We also discovered that the mutant phenotype of Osx-tTA;TetO-Vegfc mice could be reversed by inhibiting the expression of VEGF-C. Taken together, our results indicate that expression of VEGF-C in bone is sufficient to induce the pathologic hallmarks of GSD in mice.

Article and author information

Author details

  1. Devon Hominick

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Asitha Silva

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Noor Khurana

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Ying Liu

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Paul C Dechow

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Jian Q Feng

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Bronislaw Pytowski

    Eli Lilly and Company, New York, United States
    For correspondence
    bronek.pytowski@gmail.com
    Competing interests
    Bronislaw Pytowski, During preparation of the manuscript, B. Pytowski was an employee of Eli Lilly and continues to hold stock in the company.
  8. Joseph M Rutkowski

    Department of Medical Physiology, Texas A&M College of Medicine, College Station, United States
    Competing interests
    No competing interests declared.
  9. Kari Alitalo

    Wihuri Research Institute, University of Helsinki, Helsinki, Finland
    Competing interests
    Kari Alitalo, Reviewing editor, eLife.
  10. Michael T Dellinger

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.dellinger@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3315-4239

Funding

The Lymphatic Malformation Institute (Research Grant)

  • Michael T Dellinger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments described in this manuscript were carried out in accordance with animal protocols (2014-0031 and 2016-101510) approved by the Institutional Animal Care and Use Committee of UT Southwestern Medical Center.

Copyright

© 2018, Hominick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,175
    views
  • 436
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Devon Hominick
  2. Asitha Silva
  3. Noor Khurana
  4. Ying Liu
  5. Paul C Dechow
  6. Jian Q Feng
  7. Bronislaw Pytowski
  8. Joseph M Rutkowski
  9. Kari Alitalo
  10. Michael T Dellinger
(2018)
VEGF-C promotes the development of lymphatics in bone and bone loss
eLife 7:e34323.
https://doi.org/10.7554/eLife.34323

Share this article

https://doi.org/10.7554/eLife.34323

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Menglei Yang, Hafiz Muhammad Jafar Hussain ... Baolu Shi
    Research Article

    Asthenoteratozoospermia, a prevalent cause of male infertility, lacks a well-defined etiology. DNAH12 is a special dynein featured by the absence of a microtubule-binding domain, however, its functions in spermatogenesis remain largely unknown. Through comprehensive genetic analyses involving whole-exome sequencing and subsequent Sanger sequencing on infertile patients and fertile controls from six distinct families, we unveiled six biallelic mutations in DNAH12 that co-segregate recessively with male infertility in the studied families. Transmission electron microscopy (TEM) revealed pronounced axonemal abnormalities, including inner dynein arms (IDAs) impairment and central pair (CP) loss in sperm flagella of the patients. Mouse models (Dnah12-/- and Dnah12mut/mut) were generated and recapitulated the reproductive defects in the patients. Noteworthy, DNAH12 deficiency did not show effects on cilium organization and function. Mechanistically, DNAH12 was confirmed to interact with two other IDA components DNALI1 and DNAH1, while disruption of DNAH12 leads to failed recruitment of DNALI1 and DNAH1 to IDAs and compromised sperm development. Furthermore, DNAH12 also interacts with radial spoke head proteins RSPH1, RSPH9, and DNAJB13 to regulate CP stability. Moreover, the infertility of Dnah12-/- mice could be overcome by intracytoplasmic sperm injection (ICSI) treatment. Collectively, DNAH12 plays a crucial role in the proper organization of axoneme in sperm flagella, but not cilia, by recruiting DNAH1 and DNALI1 in both humans and mice. These findings expand our comprehension of dynein component assembly in flagella and cilia and provide a valuable marker for genetic counseling and diagnosis of asthenoteratozoospermia in clinical practice.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.