VEGF-C promotes the development of lymphatics in bone and bone loss

  1. Devon Hominick
  2. Asitha Silva
  3. Noor Khurana
  4. Ying Liu
  5. Paul C Dechow
  6. Jian Q Feng
  7. Bronislaw Pytowski  Is a corresponding author
  8. Joseph M Rutkowski
  9. Kari Alitalo
  10. Michael T Dellinger  Is a corresponding author
  1. UT Southwestern Medical Center, United States
  2. Texas A&M College of Dentistry, United States
  3. Eli Lilly and Company, United States
  4. Texas A&M College of Medicine, United States
  5. University of Helsinki, Finland

Abstract

Patients with Gorham-Stout disease (GSD) have lymphatic vessels in their bones and their bones gradually disappear. Here we report that mice that overexpress VEGF-C in bone exhibit a phenotype that resembles GSD. To drive VEGF-C expression in bone, we generated Osx-tTA;TetO-Vegfc double-transgenic mice. In contrast to Osx-tTA mice, Osx-tTA;TetO-Vegfc mice developed lymphatics in their bones. We found that inhibition of VEGFR3, but not VEGFR2, prevented the formation of bone lymphatics in Osx-tTA;TetO-Vegfc mice. Radiological and histological analysis revealed that bones from Osx-tTA;TetO-Vegfc mice were more porous and had more osteoclasts than bones from Osx-tTA mice. Importantly, we found that bone loss in Osx-tTA;TetO-Vegfc mice could be attenuated by an osteoclast inhibitor. We also discovered that the mutant phenotype of Osx-tTA;TetO-Vegfc mice could be reversed by inhibiting the expression of VEGF-C. Taken together, our results indicate that expression of VEGF-C in bone is sufficient to induce the pathologic hallmarks of GSD in mice.

Article and author information

Author details

  1. Devon Hominick

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  2. Asitha Silva

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Noor Khurana

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Ying Liu

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Paul C Dechow

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  6. Jian Q Feng

    Biomedical Sciences, Texas A&M College of Dentistry, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Bronislaw Pytowski

    Eli Lilly and Company, New York, United States
    For correspondence
    bronek.pytowski@gmail.com
    Competing interests
    Bronislaw Pytowski, During preparation of the manuscript, B. Pytowski was an employee of Eli Lilly and continues to hold stock in the company.
  8. Joseph M Rutkowski

    Department of Medical Physiology, Texas A&M College of Medicine, College Station, United States
    Competing interests
    No competing interests declared.
  9. Kari Alitalo

    Wihuri Research Institute, University of Helsinki, Helsinki, Finland
    Competing interests
    Kari Alitalo, Reviewing editor, eLife.
  10. Michael T Dellinger

    Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.dellinger@utsouthwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3315-4239

Funding

The Lymphatic Malformation Institute (Research Grant)

  • Michael T Dellinger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animal experiments described in this manuscript were carried out in accordance with animal protocols (2014-0031 and 2016-101510) approved by the Institutional Animal Care and Use Committee of UT Southwestern Medical Center.

Copyright

© 2018, Hominick et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,196
    views
  • 437
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Devon Hominick
  2. Asitha Silva
  3. Noor Khurana
  4. Ying Liu
  5. Paul C Dechow
  6. Jian Q Feng
  7. Bronislaw Pytowski
  8. Joseph M Rutkowski
  9. Kari Alitalo
  10. Michael T Dellinger
(2018)
VEGF-C promotes the development of lymphatics in bone and bone loss
eLife 7:e34323.
https://doi.org/10.7554/eLife.34323

Share this article

https://doi.org/10.7554/eLife.34323

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.