Uncovering temporal structure in hippocampal output patterns

  1. Kourosh Maboudi
  2. Etienne Ackermann
  3. Laurel Watkins de Jong
  4. Brad Pfeiffer
  5. David Foster
  6. Kamran Diba  Is a corresponding author
  7. Caleb Kemere  Is a corresponding author
  1. University of Michigan, United States
  2. Rice University, United States
  3. University of Texas Southwestern, United States
  4. University of California, Berkeley, United States

Abstract

Place cell activity of hippocampal pyramidal cells has been described as the cognitive substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with a spatial map of the environment, and can even decode animals' positions during behavior. Moreover, we demonstrate the model can be used to identify hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to provide a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory.

Data availability

We analyzed data from neural recording experiments. Data for Figures 1-5 has been previously reported in [1]. These data and also data for Figure 8 are available from Kamran Diba on request. Data for Figure 6 was previously reported in [2] and is available from Brad Pfeiffer and David Foster on request. Data for Figure 7 was previously reported in [3] is available from the CRCNS.org archive ('hc-6'). [1] Diba and Buzsaki, Nature Neuroscience, 2007 [2] Pfeiffer and Foster, Science, 2015 [3] Karlsson and Frank, Nature Neuroscience, 2009.All analysis code and sample recording epochs for Figures 1-7 are available on https://github.com/kemerelab/UncoveringTemporalStructureHippocampus. These make use of our broader open-source Python analysis software https://github.com/nelpy.

The following previously published data sets were used

Article and author information

Author details

  1. Kourosh Maboudi

    Department of Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Etienne Ackermann

    Department of Electrical and Computer Engineering, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Laurel Watkins de Jong

    Department of Anesthesiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brad Pfeiffer

    Department of Neuroscience, University of Texas Southwestern, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David Foster

    Department of Psychology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kamran Diba

    Department of Anesthesiology, University of Michigan, Ann Arbor, United States
    For correspondence
    kdiba@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5128-4478
  7. Caleb Kemere

    Department of Electrical and Computer Engineering, Rice University, Houston, United States
    For correspondence
    caleb.kemere@rice.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2054-0234

Funding

National Science Foundation (IOS-1550994)

  • Etienne Ackermann
  • Caleb Kemere

Human Frontier Science Program (RGY0088)

  • Etienne Ackermann
  • Caleb Kemere

Ken Kennedy Institute (ERIT)

  • Caleb Kemere

National Institute of Mental Health (R01MH109170)

  • Kourosh Maboudi
  • Kamran Diba

National Institute of Mental Health (R01MH085823)

  • Brad Pfeiffer
  • David Foster

Alfred P. Sloan Foundation

  • Brad Pfeiffer
  • David Foster

Brain and Behavior Research Foundation (NARSAD Young Investigator Grant)

  • Brad Pfeiffer
  • David Foster

McKnight Endowment Fund for Neuroscience

  • David Foster

National Science Foundation (CBET-1351692)

  • Etienne Ackermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: As reported previously, all procedures were approved by the Johns Hopkins University, Rutgers University, and University of California, San Francisco Animal Care and Use Committees and followed US National Institutes of Health animal use guidelines (protocol 90-042).

Copyright

© 2018, Maboudi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,751
    views
  • 869
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kourosh Maboudi
  2. Etienne Ackermann
  3. Laurel Watkins de Jong
  4. Brad Pfeiffer
  5. David Foster
  6. Kamran Diba
  7. Caleb Kemere
(2018)
Uncovering temporal structure in hippocampal output patterns
eLife 7:e34467.
https://doi.org/10.7554/eLife.34467

Share this article

https://doi.org/10.7554/eLife.34467

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.