1. Neuroscience
Download icon

Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

  1. Simon Nikolaus Weber  Is a corresponding author
  2. Henning Sprekeler  Is a corresponding author
  1. Technische Universität Berlin, Germany
Research Article
  • Cited 20
  • Views 8,580
  • Annotations
Cite this article as: eLife 2018;7:e34560 doi: 10.7554/eLife.34560

Abstract

Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction. The underlying circuit mechanisms are not resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns - in both their selectivity and their invariance - arise from the same mechanism: Excitatory and inhibitory synaptic plasticity that is driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. The model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Simon Nikolaus Weber

    Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
    For correspondence
    weber@tu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1169-9879
  2. Henning Sprekeler

    Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
    For correspondence
    h.sprekeler@tu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0690-3553

Funding

German Federal Ministry for Education and Research (FKZ 01GQ1201)

  • Henning Sprekeler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Foster, University of California, Berkeley, United States

Publication history

  1. Received: December 21, 2017
  2. Accepted: February 19, 2018
  3. Accepted Manuscript published: February 21, 2018 (version 1)
  4. Version of Record published: April 30, 2018 (version 2)

Copyright

© 2018, Weber & Sprekeler

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,580
    Page views
  • 701
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)