Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

  1. Simon Nikolaus Weber  Is a corresponding author
  2. Henning Sprekeler  Is a corresponding author
  1. Technische Universität Berlin, Germany

Abstract

Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction. The underlying circuit mechanisms are not resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns - in both their selectivity and their invariance - arise from the same mechanism: Excitatory and inhibitory synaptic plasticity that is driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. The model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Simon Nikolaus Weber

    Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
    For correspondence
    weber@tu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1169-9879
  2. Henning Sprekeler

    Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
    For correspondence
    h.sprekeler@tu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0690-3553

Funding

German Federal Ministry for Education and Research (FKZ 01GQ1201)

  • Henning Sprekeler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Foster, University of California, Berkeley, United States

Version history

  1. Received: December 21, 2017
  2. Accepted: February 19, 2018
  3. Accepted Manuscript published: February 21, 2018 (version 1)
  4. Version of Record published: April 30, 2018 (version 2)

Copyright

© 2018, Weber & Sprekeler

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,453
    views
  • 1,025
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Nikolaus Weber
  2. Henning Sprekeler
(2018)
Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity
eLife 7:e34560.
https://doi.org/10.7554/eLife.34560

Share this article

https://doi.org/10.7554/eLife.34560

Further reading

    1. Neuroscience
    Tianhao Chu, Zilong Ji ... Si Wu
    Research Article

    Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between ‘bimodal cells’ showing interleaved phase precession and procession, and ‘unimodal cells’ in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells’ firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.

    1. Neuroscience
    Josue M Regalado, Ariadna Corredera Asensio ... Priyamvada Rajasethupathy
    Research Article

    Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.