Motoneuron Wnts regulate neuromuscular junction development

  1. Chengyong Shen  Is a corresponding author
  2. Lei Li
  3. Kai Zhao
  4. Lei Bai
  5. Ailian Wang
  6. Xiaoqiu Shu
  7. Yatao Xiao
  8. Jianmin Zhang
  9. Kejing Zhang
  10. Tiankun Hui
  11. Wenbing Chen
  12. Bin Zhang
  13. Wei Hsu
  14. Wen-Cheng Xiong
  15. Lin Mei  Is a corresponding author
  1. Zhejiang University, China
  2. Case Western Reserve University, United States
  3. Augusta University, United States
  4. Nanchang University, China
  5. Huazhong University of Science and Technologyy, China
  6. University of Rochester Medical Center, United States

Abstract

The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Unlike extensively investigated postsynaptic differentiation, less is known about mechanisms of presynaptic assembly. Genetic evidence of Wnt in mammalian NMJ development was missing due to the existence of multiple Wnts and their receptors. We show when Wnt secretion is abolished from motoneurons by mutating the Wnt ligand secretion mediator (Wls) gene, mutant mice showed muscle weakness and neurotransmission impairment. NMJs were unstable with reduced synaptic junctional folds and fragmented AChR clusters. Nerve terminals were swollen; synaptic vesicles were fewer and mislocated. The presynaptic deficits occurred earlier than postsynaptic deficits. Intriguingly, these phenotypes were not observed when deleting Wls in muscles or Schwann cells. We identified Wnt7A and Wnt7B as major Wnts for nerve terminal development in rescue experiments. These observations demonstrate a necessary role of motoneuron Wnts in NMJ development, in particular presynaptic differentiation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Chengyong Shen

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    For correspondence
    cshen@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  2. Lei Li

    Department of Neuroscience, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Zhao

    Department of Neuroscience and Regenerative Medicine, Augusta University, Georgia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lei Bai

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ailian Wang

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoqiu Shu

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yatao Xiao

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Jianmin Zhang

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Kejing Zhang

    Institute of Translational Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Tiankun Hui

    Institute of Life Science, Nanchang University, Jiangxi, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Wenbing Chen

    Department of Neuroscience, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bin Zhang

    Department of Physiology, Huazhong University of Science and Technologyy, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Wei Hsu

    Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Wen-Cheng Xiong

    Department of Neuroscience, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9071-7598
  15. Lin Mei

    Department of Neuroscience, Case Western Reserve University, Cleveland, United States
    For correspondence
    lin.mei@case.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

National key research and development program of china (2017YFA0104903)

  • Chengyong Shen

Zhejiang provincial Natural Sciences Foundation of China (LR17H090001)

  • Chengyong Shen

National Natural Science Foundation of China (31671040)

  • Chengyong Shen

National Natural Science Foundation of China (31701036)

  • Kejing Zhang

National Institutes of Health

  • Lin Mei

National Institutes of Health

  • Wen-Cheng Xiong

Muscular Dystrophy Association

  • Lin Mei

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments with animals were approved by Institutional Animal Care andUse Committees of Augusta University (2011-0393), Case Western Reserve University (2017-0115), and Zhejiang University (10262).

Copyright

© 2018, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,938
    views
  • 682
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chengyong Shen
  2. Lei Li
  3. Kai Zhao
  4. Lei Bai
  5. Ailian Wang
  6. Xiaoqiu Shu
  7. Yatao Xiao
  8. Jianmin Zhang
  9. Kejing Zhang
  10. Tiankun Hui
  11. Wenbing Chen
  12. Bin Zhang
  13. Wei Hsu
  14. Wen-Cheng Xiong
  15. Lin Mei
(2018)
Motoneuron Wnts regulate neuromuscular junction development
eLife 7:e34625.
https://doi.org/10.7554/eLife.34625

Share this article

https://doi.org/10.7554/eLife.34625

Further reading

    1. Neuroscience
    Sudhanvan Iyer, Kathryn Maxson Jones ... Mary A Majumder
    Review Article

    In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on N = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants’ informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.

    1. Neuroscience
    Gordon H Petty, Randy M Bruno
    Research Article

    Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to attend to one sensory modality while ignoring a second modality, namely to attend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pattern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e. whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.