A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models

  1. Yuhan Zhao
  2. Lihua Wu
  3. Xuetian Yue
  4. Cen Zhang
  5. Jianming Wang
  6. Jun Li
  7. Xiaohui Sun
  8. Yiming Zhu
  9. Zhaohui Feng
  10. Wenwei Hu  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States
  2. Zhejiang University, China

Abstract

Tumor suppressor p53 prevents early death due to cancer development. However, the role of p53 in aging process and longevity has not been well-established. In humans, single nucleotide polymorphism (SNP) with either arginine (R72) or proline (P72) at codon 72 influences p53 activity; the P72 allele has a weaker p53 activity and function in tumor suppression. Here, employing a mouse model with knock-in of human TP53 gene carrying codon 72 SNP, we found that despite increased cancer risk, P72 mice that escape tumor development display a longer lifespan than R72 mice. Further, P72 mice have a delayed development of aging-associated phenotypes compared with R72 mice. Mechanistically, P72 mice can better retain the self-renewal function of stem/progenitor cells compared with R72 mice during aging. This study provides direct genetic evidence demonstrating that p53 codon 72 SNP directly impacts aging and longevity, which supports a role of p53 in regulation of longevity.

Article and author information

Author details

  1. Yuhan Zhao

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5529-1907
  2. Lihua Wu

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xuetian Yue

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cen Zhang

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianming Wang

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Li

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaohui Sun

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yiming Zhu

    Department of Epidemiology and Biostatistics, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhaohui Feng

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Wenwei Hu

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    For correspondence
    wh221@cinj.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3971-4257

Funding

Lawrence Ellison Foundation (New Investigate Award AG-NS-0781-11)

  • Wenwei Hu

National Institutes of Health (1R01CA160558)

  • Wenwei Hu

National Institutes of Health (1R01CA203965)

  • Wenwei Hu

National Institutes of Health (F99CA222734)

  • Yuhan Zhao

National Institutes of Health (1R01CA227912)

  • Zhaohui Feng
  • Wenwei Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maureen Murphy, The Wistar Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animal experiments were approved by institutional animal care and use committee (IACUC) protocol (I14-012) of the University of Rutgers.

Version history

  1. Received: December 28, 2017
  2. Accepted: March 18, 2018
  3. Accepted Manuscript published: March 20, 2018 (version 1)
  4. Version of Record published: April 18, 2018 (version 2)

Copyright

© 2018, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,043
    views
  • 556
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuhan Zhao
  2. Lihua Wu
  3. Xuetian Yue
  4. Cen Zhang
  5. Jianming Wang
  6. Jun Li
  7. Xiaohui Sun
  8. Yiming Zhu
  9. Zhaohui Feng
  10. Wenwei Hu
(2018)
A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models
eLife 7:e34701.
https://doi.org/10.7554/eLife.34701

Share this article

https://doi.org/10.7554/eLife.34701

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.