A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models

  1. Yuhan Zhao
  2. Lihua Wu
  3. Xuetian Yue
  4. Cen Zhang
  5. Jianming Wang
  6. Jun Li
  7. Xiaohui Sun
  8. Yiming Zhu
  9. Zhaohui Feng
  10. Wenwei Hu  Is a corresponding author
  1. Rutgers, The State University of New Jersey, United States
  2. Zhejiang University, China

Abstract

Tumor suppressor p53 prevents early death due to cancer development. However, the role of p53 in aging process and longevity has not been well-established. In humans, single nucleotide polymorphism (SNP) with either arginine (R72) or proline (P72) at codon 72 influences p53 activity; the P72 allele has a weaker p53 activity and function in tumor suppression. Here, employing a mouse model with knock-in of human TP53 gene carrying codon 72 SNP, we found that despite increased cancer risk, P72 mice that escape tumor development display a longer lifespan than R72 mice. Further, P72 mice have a delayed development of aging-associated phenotypes compared with R72 mice. Mechanistically, P72 mice can better retain the self-renewal function of stem/progenitor cells compared with R72 mice during aging. This study provides direct genetic evidence demonstrating that p53 codon 72 SNP directly impacts aging and longevity, which supports a role of p53 in regulation of longevity.

Article and author information

Author details

  1. Yuhan Zhao

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5529-1907
  2. Lihua Wu

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xuetian Yue

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cen Zhang

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianming Wang

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jun Li

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaohui Sun

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yiming Zhu

    Department of Epidemiology and Biostatistics, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Zhaohui Feng

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Wenwei Hu

    Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
    For correspondence
    wh221@cinj.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3971-4257

Funding

Lawrence Ellison Foundation (New Investigate Award AG-NS-0781-11)

  • Wenwei Hu

National Institutes of Health (1R01CA160558)

  • Wenwei Hu

National Institutes of Health (1R01CA203965)

  • Wenwei Hu

National Institutes of Health (F99CA222734)

  • Yuhan Zhao

National Institutes of Health (1R01CA227912)

  • Zhaohui Feng
  • Wenwei Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animal experiments were approved by institutional animal care and use committee (IACUC) protocol (I14-012) of the University of Rutgers.

Copyright

© 2018, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,199
    views
  • 563
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuhan Zhao
  2. Lihua Wu
  3. Xuetian Yue
  4. Cen Zhang
  5. Jianming Wang
  6. Jun Li
  7. Xiaohui Sun
  8. Yiming Zhu
  9. Zhaohui Feng
  10. Wenwei Hu
(2018)
A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models
eLife 7:e34701.
https://doi.org/10.7554/eLife.34701

Share this article

https://doi.org/10.7554/eLife.34701

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Simei Go, Constantinos Demetriou ... Eric O Neill
    Research Article

    The immunosuppressive microenvironment in pancreatic ductal adenocarcinoma (PDAC) prevents tumor control and strategies to restore anti-cancer immunity (i.e. by increasing CD8 T-cell activity) have had limited success. Here, we demonstrate how inducing localized physical damage using ionizing radiation (IR) unmasks the benefit of immunotherapy by increasing tissue-resident natural killer (trNK) cells that support CD8 T activity. Our data confirms that targeting mouse orthotopic PDAC tumors with IR together with CCR5 inhibition and PD1 blockade reduces E-cadherin positive tumor cells by recruiting a hypoactive NKG2D-ve NK population, phenotypically reminiscent of trNK cells, that supports CD8 T-cell involvement. We show an equivalent population in human single-cell RNA sequencing (scRNA-seq) PDAC cohorts that represents immunomodulatory trNK cells that could similarly support CD8 T-cell levels in a cDC1-dependent manner. Importantly, a trNK signature associates with survival in PDAC and other solid malignancies revealing a potential beneficial role for trNK in improving adaptive anti-tumor responses and supporting CCR5 inhibitor (CCR5i)/αPD1 and IR-induced damage as a novel therapeutic approach.

    1. Cancer Biology
    Hyungtai Sim, Hyun Jung Park ... Murim Choi
    Research Article

    Clonal hematopoiesis of indeterminate potential (CHIP) allows estimation of clonal dynamics and documentation of somatic mutations in the hematopoietic system. Recent studies utilizing large cohorts of the general population and patients have revealed significant associations of CHIP burden with age and disease status, including in cancer and chronic diseases. An increasing number of cancer patients are treated with immune checkpoint inhibitors (ICIs), but the association of ICI response in non-small cell lung cancer (NSCLC) patients with CHIP burden remains to be determined. We collected blood samples from 100 metastatic NSCLC patients before and after ICI for high-depth sequencing of the CHIP panel and 63 samples for blood single-cell RNA sequencing. Whole exome sequencing was performed in an independent replication cohort of 180 patients. The impact of CHIP status on the immunotherapy response was not significant. However, metastatic lung cancer patients showed higher CHIP prevalence (44/100 for patients vs. 5/42 for controls; p = 0.01). In addition, lung squamous cell carcinoma (LUSC) patients showed increased burden of larger clones compared to lung adenocarcinoma (LUAD) patients (8/43 for LUSC vs. 2/50 for LUAD; p = 0.04). Furthermore, single-cell RNA-seq analysis of the matched patients showed significant enrichment of inflammatory pathways mediated by NF-κB in myeloid clusters of the severe CHIP group. Our findings suggest minimal involvement of CHIP mutation and clonal dynamics during immunotherapy but a possible role of CHIP as an indicator of immunologic response in NSCLC patients.