Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts

  1. Hande Boyaci
  2. James Chen
  3. Mirjana Lilic
  4. Margaret Palka
  5. Rachel Anne Mooney
  6. Robert Landick
  7. Seth A Darst  Is a corresponding author
  8. Elizabeth A Campbell  Is a corresponding author
  1. The Rockefeller University, United States
  2. University of Wisconsin-Madison, United States

Abstract

Fidaxomicin (Fdx) is an antimicrobial RNA polymerase (RNAP) inhibitor highly effective against Mycobacterium tuberculosis RNAP in vitro, but clinical use of Fdx is limited to treating Clostridium difficile intestinal infections due to poor absorption. To identify the structural determinants of Fdx binding to RNAP, we determined the 3.4 Å cryo-electron microscopy structure of a complete M. tuberculosis RNAP holoenzyme in complex with Fdx. We find that the actinobacteria general transcription factor RbpA contacts fidaxomycin, explaining its strong effect on M. tuberculosis. Additional structures define conformational states of M. tuberculosis RNAP between the free apo-holoenzyme and the promoter-engaged open complex ready for transcription. The results establish that Fdx acts like a doorstop to jam the enzyme in an open state, preventing the motions necessary to secure promoter DNA in the active site. Our results provide a structural platform to guide development of anti-tuberculosis antimicrobials based on the Fdx binding pocket.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Hande Boyaci

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. James Chen

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mirjana Lilic

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Margaret Palka

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rachel Anne Mooney

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Robert Landick

    Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Seth A Darst

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    For correspondence
    darst@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8241-3153
  8. Elizabeth A Campbell

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    For correspondence
    elizabeth.campbell0@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

The Rockefeller University (Women in Science Fellowship)

  • Hande Boyaci

National Institute of General Medical Sciences (R01 GM38660)

  • Robert Landick

National Institute of General Medical Sciences (R35 GM118130)

  • Seth A Darst

National Institute of General Medical Sciences (R01 GM114450)

  • Elizabeth A Campbell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Boyaci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,568
    views
  • 567
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hande Boyaci
  2. James Chen
  3. Mirjana Lilic
  4. Margaret Palka
  5. Rachel Anne Mooney
  6. Robert Landick
  7. Seth A Darst
  8. Elizabeth A Campbell
(2018)
Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts
eLife 7:e34823.
https://doi.org/10.7554/eLife.34823

Share this article

https://doi.org/10.7554/eLife.34823

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.