Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility

  1. Valerie A Larson
  2. Yevgeniya Mironova
  3. Kim G Vanderpool
  4. Ari Waisman
  5. John E Rash
  6. Amit Agarwal  Is a corresponding author
  7. Dwight E Bergles  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. Colorado State University, United States
  3. Johannes Gutenberg University, Germany

Abstract

The inwardly rectifying K+ channel Kir4.1 is broadly expressed by CNS glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here we show that selective deletion of Kir4.1 from oligodendrocyte progenitors (OPCs) or mature oligodendrocytes did not impair their development or disrupt the structure of myelin. However, mice lacking oligodendrocyte Kir4.1 channels exhibited profound functional impairments, including slower clearance of extracellular K+ and delayed recovery of axons from repetitive stimulation in white matter, as well as spontaneous seizures, a lower seizure threshold, and activity-dependent motor deficits. These results indicate that Kir4.1 channels in oligodendrocytes play an important role in extracellular K+ homeostasis in white matter, and that selective loss of this channel from oligodendrocytes is sufficient to impair K+ clearance and promote seizures.

Article and author information

Author details

  1. Valerie A Larson

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0778-0305
  2. Yevgeniya Mironova

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Kim G Vanderpool

    Department of Biological Sciences, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  4. Ari Waisman

    Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
    Competing interests
    No competing interests declared.
  5. John E Rash

    Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  6. Amit Agarwal

    The Solomon H Snyder Department of NeuroscienceInstitute for Anatomy and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    agarwal@ana.uni-heidelberg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7948-4498
  7. Dwight E Bergles

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    dbergles@jhmi.edu
    Competing interests
    Dwight E Bergles, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-7378

Funding

National Institutes of Health (NS080153)

  • John E Rash

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

  • Dwight E Bergles

Target ALS

  • Dwight E Bergles

National Institutes of Health (NS050274)

  • Dwight E Bergles

National Institutes of Health (NS051509)

  • Dwight E Bergles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary L Westbrook, Vollum Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#MO14M310) of the Johns Hopkins University.

Version history

  1. Received: January 5, 2018
  2. Accepted: March 28, 2018
  3. Accepted Manuscript published: March 29, 2018 (version 1)
  4. Version of Record published: April 17, 2018 (version 2)

Copyright

© 2018, Larson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,546
    views
  • 971
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie A Larson
  2. Yevgeniya Mironova
  3. Kim G Vanderpool
  4. Ari Waisman
  5. John E Rash
  6. Amit Agarwal
  7. Dwight E Bergles
(2018)
Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility
eLife 7:e34829.
https://doi.org/10.7554/eLife.34829

Share this article

https://doi.org/10.7554/eLife.34829

Further reading

    1. Neuroscience
    Olujolagbe Layinka, Luca D Hargitai ... Florence YN Leung
    Feature Article

    Improving our understanding of autism, ADHD, dyslexia and other neurodevelopmental conditions requires collaborations between genetics, psychiatry, the social sciences and other fields of research.

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.