Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility

  1. Valerie A Larson
  2. Yevgeniya Mironova
  3. Kim G Vanderpool
  4. Ari Waisman
  5. John E Rash
  6. Amit Agarwal  Is a corresponding author
  7. Dwight E Bergles  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States
  2. Colorado State University, United States
  3. Johannes Gutenberg University, Germany

Abstract

The inwardly rectifying K+ channel Kir4.1 is broadly expressed by CNS glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here we show that selective deletion of Kir4.1 from oligodendrocyte progenitors (OPCs) or mature oligodendrocytes did not impair their development or disrupt the structure of myelin. However, mice lacking oligodendrocyte Kir4.1 channels exhibited profound functional impairments, including slower clearance of extracellular K+ and delayed recovery of axons from repetitive stimulation in white matter, as well as spontaneous seizures, a lower seizure threshold, and activity-dependent motor deficits. These results indicate that Kir4.1 channels in oligodendrocytes play an important role in extracellular K+ homeostasis in white matter, and that selective loss of this channel from oligodendrocytes is sufficient to impair K+ clearance and promote seizures.

Article and author information

Author details

  1. Valerie A Larson

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0778-0305
  2. Yevgeniya Mironova

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Kim G Vanderpool

    Department of Biological Sciences, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  4. Ari Waisman

    Institute for Molecular Medicine, University Medical Center, Johannes Gutenberg University, Mainz, Germany
    Competing interests
    No competing interests declared.
  5. John E Rash

    Department of Biomedical Sciences, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  6. Amit Agarwal

    The Solomon H Snyder Department of NeuroscienceInstitute for Anatomy and Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    agarwal@ana.uni-heidelberg.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7948-4498
  7. Dwight E Bergles

    The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    dbergles@jhmi.edu
    Competing interests
    Dwight E Bergles, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7133-7378

Funding

National Institutes of Health (NS080153)

  • John E Rash

Dr. Miriam and Sheldon G. Adelson Medical Research Foundation

  • Dwight E Bergles

Target ALS

  • Dwight E Bergles

National Institutes of Health (NS050274)

  • Dwight E Bergles

National Institutes of Health (NS051509)

  • Dwight E Bergles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#MO14M310) of the Johns Hopkins University.

Copyright

© 2018, Larson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,063
    views
  • 1,025
    downloads
  • 129
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Valerie A Larson
  2. Yevgeniya Mironova
  3. Kim G Vanderpool
  4. Ari Waisman
  5. John E Rash
  6. Amit Agarwal
  7. Dwight E Bergles
(2018)
Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility
eLife 7:e34829.
https://doi.org/10.7554/eLife.34829

Share this article

https://doi.org/10.7554/eLife.34829

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.