Causal contribution and dynamical encoding in the striatum during evidence accumulation

  1. Michael M Yartsev  Is a corresponding author
  2. Timothy D Hanks  Is a corresponding author
  3. Alice Misun Yoon
  4. Carlos D Brody  Is a corresponding author
  1. Princeton University, United States

Abstract

A broad range of decision-making processes involve gradual accumulation of evidence over time, but the neural circuits responsible for this computation are not yet established. Recent data indicates that cortical regions prominently associated with accumulating evidence, such as posterior parietal cortex and the frontal orienting fields, may not be directly involved in this computation. Which, then, are the regions involved? Regions directly involved in evidence accumulation should directly influence the accumulation-based decision-making behavior, have a graded neural encoding of accumulated evidence and contribute throughout the accumulation process. Here, we investigated the role of the anterior dorsal striatum (ADS) in a rodent auditory evidence accumulation task using a combination of behavioral, pharmacological, optogenetic, electrophysiological and computational approaches. We find that the ADS is the first brain region known to satisfy the three criteria. Thus, the ADS may be the first identified node in the network responsible for evidence accumulation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michael M Yartsev

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    myartsev@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0952-2801
  2. Timothy D Hanks

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    thanks@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4147-4475
  3. Alice Misun Yoon

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7832-2796
  4. Carlos D Brody

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    brody@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4201-561X

Funding

National Institutes of Health (R01MH108358)

  • Carlos D Brody

Starr Foundation (Starr Fellowship)

  • Michael M Yartsev

National Institutes of Health (F32MH098572)

  • Timothy D Hanks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures described in this study were approved by the Princeton University Institutional Animal Care and Use Committee (IACUC; Protocols #1853) and carried out in accordance with National Institutes of Health standards.

Copyright

© 2018, Yartsev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,678
    views
  • 931
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael M Yartsev
  2. Timothy D Hanks
  3. Alice Misun Yoon
  4. Carlos D Brody
(2018)
Causal contribution and dynamical encoding in the striatum during evidence accumulation
eLife 7:e34929.
https://doi.org/10.7554/eLife.34929

Share this article

https://doi.org/10.7554/eLife.34929

Further reading

    1. Neuroscience
    Morgan Fitzgerald, Eena Kosik, Bradley Voytek
    Insight

    Changes in neural activity thought to reflect brain aging may be partly influenced by age-dependent signals ‘leaking’ from the heart.

    1. Evolutionary Biology
    2. Neuroscience
    Yujiang Wang, Karoline Leiberg ... Bruno Mota
    Research Article

    The cerebral cortex displays a bewildering diversity of shapes and sizes across and within species. Despite this diversity, we present a universal multi-scale description of primate cortices. We show that all cortical shapes can be described as a set of nested folds of different sizes. As neighbouring folds are gradually merged, the cortices of 11 primate species follow a common scale-free morphometric trajectory, that also overlaps with over 70 other mammalian species. Our results indicate that all cerebral cortices are approximations of the same archetypal fractal shape with a fractal dimension of df = 2.5. Importantly, this new understanding enables a more precise quantification of brain morphology as a function of scale. To demonstrate the importance of this new understanding, we show a scale-dependent effect of ageing on brain morphology. We observe a more than fourfold increase in effect size (from two standard deviations to eight standard deviations) at a spatial scale of approximately 2 mm compared to standard morphological analyses. Our new understanding may, therefore, generate superior biomarkers for a range of conditions in the future.