Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females

  1. Jian Qiu
  2. Heidi M Rivera
  3. Martha A Bosch
  4. Stephanie L Padilla
  5. Todd L Stincic
  6. Richard D Palmiter
  7. Martin J Kelly
  8. Oline K Rønnekleiv  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Howard Hughes Medical Institute, University of Washington, United States

Abstract

The neuropeptides tachykinin2 (Tac2) and kisspeptin (Kiss1) in hypothalamic arcuate nucleus Kiss1 (Kiss1ARH) neurons are essential for pulsatile release of GnRH and reproduction. Since 17β-estradiol (E2) decreases Kiss1 and Tac2 mRNA expression in Kiss1ARH neurons, the role of Kiss1ARH neurons during E2-driven anorexigenic states and their coordination of POMC and NPY/AgRP feeding circuits have been largely ignored. Presently, we show that E2 augmented the excitability of Kiss1ARH neurons by amplifying Cacna1g, Hcn1 and Hcn2 mRNA expression and T-type calcium and h-currents. E2 increased Slc17a6 mRNA expression and glutamatergic synaptic input to arcuate neurons, which excited POMC and inhibited NPY/AgRP neurons via metabotropic receptors. Deleting Slc17a6 in Kiss1 neurons eliminated glutamate release and led to conditioned place preference for sucrose in E2-treated KO female mice. Therefore, the E2-driven increase in Kiss1 neuronal excitability and glutamate neurotransmission may play a key role in governing the motivational drive for palatable food in females.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jian Qiu

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4988-8587
  2. Heidi M Rivera

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  3. Martha A Bosch

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  4. Stephanie L Padilla

    Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Todd L Stincic

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  6. Richard D Palmiter

    Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, United States
    Competing interests
    Richard D Palmiter, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6587-0582
  7. Martin J Kelly

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8633-2510
  8. Oline K Rønnekleiv

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    For correspondence
    ronnekle@ohsu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1841-4386

Funding

National Institutes of Health (R01-DK068098)

  • Martin J Kelly
  • Oline K Rønnekleiv

National Institutes of Health (R01-NS043330)

  • Oline K Rønnekleiv

National Institutes of Health (R01-NS038809)

  • Martin J Kelly

National Institutes of Health (R01-DA024908)

  • Richard D Palmiter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Catherine Dulac, Harvard University, United States

Ethics

Animal experimentation: Animal experimentation: This study was performed in strict accordance with the recommendations from the National Institutes of Health Guide for the care and use of Laboratory Animals. All animal procedures were conducted according to the approved institutional animal care and use committee (IACUC) protocols (#IP00000585; #IP00000382) at Oregon health and Science University and (#2183-02) at University of Washington. All surgeries were performed using aseptic techniques under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: February 3, 2018
  2. Accepted: July 24, 2018
  3. Accepted Manuscript published: August 6, 2018 (version 1)
  4. Version of Record published: August 21, 2018 (version 2)

Copyright

© 2018, Qiu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,422
    views
  • 521
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jian Qiu
  2. Heidi M Rivera
  3. Martha A Bosch
  4. Stephanie L Padilla
  5. Todd L Stincic
  6. Richard D Palmiter
  7. Martin J Kelly
  8. Oline K Rønnekleiv
(2018)
Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females
eLife 7:e35656.
https://doi.org/10.7554/eLife.35656

Share this article

https://doi.org/10.7554/eLife.35656

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.