Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing

  1. Jun Kunimatsu  Is a corresponding author
  2. Tomoki W Suzuki
  3. Shogo Ohmae
  4. Masaki Tanaka  Is a corresponding author
  1. Hokkaido University School of Medicine, Japan

Abstract

The ability to flexibly adjust movement timing is important for everyday life. Although the basal ganglia and cerebellum have been implicated in monitoring of supra- and sub-second intervals, respectively, the underlying neuronal mechanism remains unclear. Here, we show that in monkeys trained to generate a self-initiated saccade at instructed timing following a visual cue, neurons in the caudate nucleus kept track of passage of time throughout the delay period, while those in the cerebellar dentate nucleus were recruited only during the last part of the delay period. Conversely, neuronal correlates of trial-by-trial variation of self-timing emerged earlier in the cerebellum than the striatum. Local inactivation of respective recording sites confirmed the difference in their relative contributions to supra- and sub-second intervals. These results suggest that the basal ganglia may measure elapsed time relative to the intended interval, while the cerebellum might be responsible for the fine adjustment of self-timing.

Data availability

Numerical data for main figures and figure supplements have been provided as source data files.

Article and author information

Author details

  1. Jun Kunimatsu

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    For correspondence
    kunimatsu.jun@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8003-0650
  2. Tomoki W Suzuki

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shogo Ohmae

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Masaki Tanaka

    Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
    For correspondence
    masaki@med.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6177-1314

Funding

Ministry of Education, Culture, Sports, Science, and Technology (17H03539,25119005)

  • Masaki Tanaka

Takeda Science Foundation

  • Masaki Tanaka

Uehara Memorial Foundation

  • Masaki Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were evaluated and approved by the Hokkaido University Animal Care and Use Committee (#13-0114). All surgery was performed under general isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,266
    views
  • 690
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jun Kunimatsu
  2. Tomoki W Suzuki
  3. Shogo Ohmae
  4. Masaki Tanaka
(2018)
Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing
eLife 7:e35676.
https://doi.org/10.7554/eLife.35676

Share this article

https://doi.org/10.7554/eLife.35676