A protein secreted by the Salmonella type III secretion system controls needle filament assembly

  1. Junya Kato
  2. Supratim Dey
  3. Jose E Soto
  4. Carmen Butan
  5. Mason C Wilkinson
  6. Roberto N De Guzman  Is a corresponding author
  7. Jorge E Galan  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. University of Kansas, United States

Abstract

Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.

Data availability

The 20 PDB coordinates, the assigned chemical shifts, and the restraints used in the NMR structure determination were deposited at the RCSB Protein Data Bank with the accession code PDB ID 6CJD and BMRB ID 30417. The above data were used to generate Fig. 7, Figure 6-figure supplement 1, Figure 7-figure supplement 1, 2, 3, and 4, and Supplementary File 1.

The following data sets were generated
    1. Kato J
    2. Dey S
    3. Soto JE
    4. Butan C
    5. Wilkinson MC
    6. De Guzman RN
    7. Galán JE
    (2018) NMR NMR structure determination of OrgC
    Publicly available at the RCSB Protein Data Bank (accession no. 6CJD).

Article and author information

Author details

  1. Junya Kato

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Supratim Dey

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose E Soto

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carmen Butan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mason C Wilkinson

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roberto N De Guzman

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    rdguzman@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Jorge E Galan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New haven, United States
    For correspondence
    jorge.galan@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-0355

Funding

National Institutes of Health (AI079022)

  • Jorge E Galan

National Institutes of Health (AI074856)

  • Roberto N De Guzman

National Institutes of Health (P20GM103418)

  • Mason C Wilkinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Kato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,914
    views
  • 439
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.35886

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.