A protein secreted by the Salmonella type III secretion system controls needle filament assembly

  1. Junya Kato
  2. Supratim Dey
  3. Jose E Soto
  4. Carmen Butan
  5. Mason C Wilkinson
  6. Roberto N De Guzman  Is a corresponding author
  7. Jorge E Galan  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. University of Kansas, United States

Abstract

Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.

Data availability

The 20 PDB coordinates, the assigned chemical shifts, and the restraints used in the NMR structure determination were deposited at the RCSB Protein Data Bank with the accession code PDB ID 6CJD and BMRB ID 30417. The above data were used to generate Fig. 7, Figure 6-figure supplement 1, Figure 7-figure supplement 1, 2, 3, and 4, and Supplementary File 1.

The following data sets were generated
    1. Kato J
    2. Dey S
    3. Soto JE
    4. Butan C
    5. Wilkinson MC
    6. De Guzman RN
    7. Galán JE
    (2018) NMR NMR structure determination of OrgC
    Publicly available at the RCSB Protein Data Bank (accession no. 6CJD).

Article and author information

Author details

  1. Junya Kato

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Supratim Dey

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose E Soto

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carmen Butan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mason C Wilkinson

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roberto N De Guzman

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    rdguzman@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Jorge E Galan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New haven, United States
    For correspondence
    jorge.galan@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-0355

Funding

National Institutes of Health (AI079022)

  • Jorge E Galan

National Institutes of Health (AI074856)

  • Roberto N De Guzman

National Institutes of Health (P20GM103418)

  • Mason C Wilkinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Version history

  1. Received: February 12, 2018
  2. Accepted: July 16, 2018
  3. Accepted Manuscript published: July 17, 2018 (version 1)
  4. Version of Record published: July 30, 2018 (version 2)
  5. Version of Record updated: November 9, 2018 (version 3)

Copyright

© 2018, Kato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,797
    views
  • 428
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junya Kato
  2. Supratim Dey
  3. Jose E Soto
  4. Carmen Butan
  5. Mason C Wilkinson
  6. Roberto N De Guzman
  7. Jorge E Galan
(2018)
A protein secreted by the Salmonella type III secretion system controls needle filament assembly
eLife 7:e35886.
https://doi.org/10.7554/eLife.35886

Share this article

https://doi.org/10.7554/eLife.35886

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Natalia E Ketaren, Fred D Mast ... John D Aitchison
    Research Advance

    To date, all major modes of monoclonal antibody therapy targeting SARS-CoV-2 have lost significant efficacy against the latest circulating variants. As SARS-CoV-2 omicron sublineages account for over 90% of COVID-19 infections, evasion of immune responses generated by vaccination or exposure to previous variants poses a significant challenge. A compelling new therapeutic strategy against SARS-CoV-2 is that of single-domain antibodies, termed nanobodies, which address certain limitations of monoclonal antibodies. Here, we demonstrate that our high-affinity nanobody repertoire, generated against wild-type SARS-CoV-2 spike protein (Mast et al., 2021), remains effective against variants of concern, including omicron BA.4/BA.5; a subset is predicted to counter resistance in emerging XBB and BQ.1.1 sublineages. Furthermore, we reveal the synergistic potential of nanobody cocktails in neutralizing emerging variants. Our study highlights the power of nanobody technology as a versatile therapeutic and diagnostic tool to combat rapidly evolving infectious diseases such as SARS-CoV-2.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article Updated

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.