A protein secreted by the Salmonella type III secretion system controls needle filament assembly

  1. Junya Kato
  2. Supratim Dey
  3. Jose E Soto
  4. Carmen Butan
  5. Mason C Wilkinson
  6. Roberto N De Guzman  Is a corresponding author
  7. Jorge E Galan  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. University of Kansas, United States

Abstract

Type III protein secretion systems (T3SS) are encoded by several pathogenic or symbiotic bacteria. The central component of this nanomachine is the needle complex. Here we show in a Salmonella Typhimurium T3SS that assembly of the needle filament of this structure requires OrgC, a protein encoded within the T3SS gene cluster. Absence of OrgC results in significantly reduced number of needle substructures but does not affect needle length. We show that OrgC is secreted by the T3SS and that exogenous addition of OrgC can complement a ∆orgC mutation. We also show that OrgC interacts with the needle filament subunit PrgI and accelerates its polymerization into filaments in vitro. The structure of OrgC shows a novel fold with a shared topology with a domain from flagellar capping proteins. These findings identify a novel component of T3SS and provide new insight into the assembly of the type III secretion machine.

Data availability

The 20 PDB coordinates, the assigned chemical shifts, and the restraints used in the NMR structure determination were deposited at the RCSB Protein Data Bank with the accession code PDB ID 6CJD and BMRB ID 30417. The above data were used to generate Fig. 7, Figure 6-figure supplement 1, Figure 7-figure supplement 1, 2, 3, and 4, and Supplementary File 1.

The following data sets were generated
    1. Kato J
    2. Dey S
    3. Soto JE
    4. Butan C
    5. Wilkinson MC
    6. De Guzman RN
    7. Galán JE
    (2018) NMR NMR structure determination of OrgC
    Publicly available at the RCSB Protein Data Bank (accession no. 6CJD).

Article and author information

Author details

  1. Junya Kato

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Supratim Dey

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose E Soto

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carmen Butan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mason C Wilkinson

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roberto N De Guzman

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    For correspondence
    rdguzman@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
  7. Jorge E Galan

    Department of Microbial Pathogenesis, Yale University School of Medicine, New haven, United States
    For correspondence
    jorge.galan@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6531-0355

Funding

National Institutes of Health (AI079022)

  • Jorge E Galan

National Institutes of Health (AI074856)

  • Roberto N De Guzman

National Institutes of Health (P20GM103418)

  • Mason C Wilkinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: February 12, 2018
  2. Accepted: July 16, 2018
  3. Accepted Manuscript published: July 17, 2018 (version 1)
  4. Version of Record published: July 30, 2018 (version 2)
  5. Version of Record updated: November 9, 2018 (version 3)

Copyright

© 2018, Kato et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,560
    Page views
  • 399
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Junya Kato
  2. Supratim Dey
  3. Jose E Soto
  4. Carmen Butan
  5. Mason C Wilkinson
  6. Roberto N De Guzman
  7. Jorge E Galan
(2018)
A protein secreted by the Salmonella type III secretion system controls needle filament assembly
eLife 7:e35886.
https://doi.org/10.7554/eLife.35886

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Abhinay Ramaprasad, Paul-Christian Burda ... Michael J Blackman
    Research Article Updated

    The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Mary F Fontana, Erica Ollmann Saphire, Marion Pepper
    Research Article

    Naturally acquired immunity to malaria develops only after many years and repeated exposures, raising the question of whether Plasmodium parasites, the etiological agents of malaria, suppress the ability of dendritic cells (DCs) to activate optimal T cell responses. We demonstrated recently that B cells, rather than DCs, are the principal activators of CD4+ T cells in murine malaria. In the present study, we further investigated factors that might prevent DCs from priming Plasmodium-specific T helper cell responses. We found that DCs were significantly less efficient at taking up infected red blood cells (iRBCs) compared to soluble antigen, whereas B cells more readily bound iRBCs. To assess whether DCs retained the capacity to present soluble antigen during malaria, we measured responses to a heterologous protein immunization administered to naïve mice or mice infected with P. chabaudi. Antigen uptake, DC activation, and expansion of immunogen-specific T cells were intact in infected mice, indicating DCs remained functional. However, polarization of the immunogen-specific response was dramatically altered, with a near-complete loss of germinal center T follicular helper cells specific for the immunogen, accompanied by significant reductions in antigen-specific B cells and antibody. Our results indicate that DCs remain competent to activate T cells during Plasmodium infection, but that T cell polarization and humoral responses are severely disrupted. This study provides mechanistic insight into the development of both Plasmodium-specific and heterologous adaptive responses in hosts with malaria.