PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse

  1. Rachel A Ross  Is a corresponding author
  2. Silvia Leon
  3. Joseph C Madara
  4. Danielle Schafer
  5. Chrysanthi Fergani
  6. Caroline A Maguire
  7. Anne MJ Verstegen
  8. Emily Brengle
  9. Dong Kong
  10. Allan E Herbison
  11. Ursula B Kaiser
  12. Bradford B Lowell
  13. Victor M Navarro  Is a corresponding author
  1. Beth Israel Deaconess Medical Center, United States
  2. Harvard Medical School, United States
  3. University of Otago, New Zealand
  4. Brigham and Women's Hospital, United States
  5. Tufts University School of Medicine, United States

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rachel A Ross

    Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, United States
    For correspondence
    rross4@partners.org
    Competing interests
    The authors declare that no competing interests exist.
  2. Silvia Leon

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph C Madara

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Danielle Schafer

    Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  5. Chrysanthi Fergani

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline A Maguire

    Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne MJ Verstegen

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Emily Brengle

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dong Kong

    Department of Neuroscience, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Allan E Herbison

    Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9615-3022
  11. Ursula B Kaiser

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bradford B Lowell

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Victor M Navarro

    Harvard Medical School, Boston, United States
    For correspondence
    vnavarro@bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5799-219X

Funding

National Institutes of Health (R01 HD090151-A1)

  • Victor M Navarro

National Institutes of Health (P30 DK057521)

  • Bradford B Lowell

National Institutes of Health (R01 HD082314)

  • Ursula B Kaiser

National Institutes of Health (R01 HD019938)

  • Ursula B Kaiser

National Institutes of Health (R00 HD071970)

  • Victor M Navarro

National Institutes of Health (5T32HL007374-36)

  • Rachel A Ross

National Institutes of Health (R01 DK075632)

  • Bradford B Lowell

National Institutes of Health (R01 DK089044)

  • Bradford B Lowell

National Institutes of Health (R01 DK111401)

  • Bradford B Lowell

National Institutes of Health (P30 DK046200)

  • Bradford B Lowell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and experimental procedures were approved by the National Institute of Health, Beth Israel Deaconess Medical Center and Brigham and Women's Hospital Institutional Animal Care and Use Committee . protocol #05165.

Copyright

© 2018, Ross et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,666
    views
  • 440
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Ross
  2. Silvia Leon
  3. Joseph C Madara
  4. Danielle Schafer
  5. Chrysanthi Fergani
  6. Caroline A Maguire
  7. Anne MJ Verstegen
  8. Emily Brengle
  9. Dong Kong
  10. Allan E Herbison
  11. Ursula B Kaiser
  12. Bradford B Lowell
  13. Victor M Navarro
(2018)
PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse
eLife 7:e35960.
https://doi.org/10.7554/eLife.35960

Share this article

https://doi.org/10.7554/eLife.35960

Further reading

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.