PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse

  1. Rachel A Ross  Is a corresponding author
  2. Silvia Leon
  3. Joseph C Madara
  4. Danielle Schafer
  5. Chrysanthi Fergani
  6. Caroline A Maguire
  7. Anne MJ Verstegen
  8. Emily Brengle
  9. Dong Kong
  10. Allan E Herbison
  11. Ursula B Kaiser
  12. Bradford B Lowell
  13. Victor M Navarro  Is a corresponding author
  1. Beth Israel Deaconess Medical Center, United States
  2. Harvard Medical School, United States
  3. University of Otago, New Zealand
  4. Brigham and Women's Hospital, United States
  5. Tufts University School of Medicine, United States

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rachel A Ross

    Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, United States
    For correspondence
    rross4@partners.org
    Competing interests
    The authors declare that no competing interests exist.
  2. Silvia Leon

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph C Madara

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Danielle Schafer

    Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  5. Chrysanthi Fergani

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Caroline A Maguire

    Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anne MJ Verstegen

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Emily Brengle

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dong Kong

    Department of Neuroscience, Tufts University School of Medicine, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Allan E Herbison

    Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9615-3022
  11. Ursula B Kaiser

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bradford B Lowell

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Victor M Navarro

    Harvard Medical School, Boston, United States
    For correspondence
    vnavarro@bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5799-219X

Funding

National Institutes of Health (R01 HD090151-A1)

  • Victor M Navarro

National Institutes of Health (P30 DK057521)

  • Bradford B Lowell

National Institutes of Health (R01 HD082314)

  • Ursula B Kaiser

National Institutes of Health (R01 HD019938)

  • Ursula B Kaiser

National Institutes of Health (R00 HD071970)

  • Victor M Navarro

National Institutes of Health (5T32HL007374-36)

  • Rachel A Ross

National Institutes of Health (R01 DK075632)

  • Bradford B Lowell

National Institutes of Health (R01 DK089044)

  • Bradford B Lowell

National Institutes of Health (R01 DK111401)

  • Bradford B Lowell

National Institutes of Health (P30 DK046200)

  • Bradford B Lowell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal care and experimental procedures were approved by the National Institute of Health, Beth Israel Deaconess Medical Center and Brigham and Women's Hospital Institutional Animal Care and Use Committee . protocol #05165.

Copyright

© 2018, Ross et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,707
    views
  • 444
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Ross
  2. Silvia Leon
  3. Joseph C Madara
  4. Danielle Schafer
  5. Chrysanthi Fergani
  6. Caroline A Maguire
  7. Anne MJ Verstegen
  8. Emily Brengle
  9. Dong Kong
  10. Allan E Herbison
  11. Ursula B Kaiser
  12. Bradford B Lowell
  13. Victor M Navarro
(2018)
PACAP neurons in the ventral premammillary nucleus regulate reproductive function in the female mouse
eLife 7:e35960.
https://doi.org/10.7554/eLife.35960

Share this article

https://doi.org/10.7554/eLife.35960

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.