Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells

  1. Sicong He
  2. Jiahao Chen
  3. Yunyun Jiang
  4. Yi Wu
  5. Lu Zhu
  6. Wan Jin
  7. Changlong Zhao
  8. Tao Yu
  9. Tienan Wang
  10. Shuting Wu
  11. Xi Lin
  12. Jianan Y Qu
  13. Zilong Wen
  14. Wenqing Zhang  Is a corresponding author
  15. Jin Xu  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. Southern Medical University, China
  3. Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, China
  4. South China University of Technology, China

Abstract

The origin of Langerhans cells (LCs), which are skin epidermis-resident macrophages, remains unclear. Current lineage tracing of LCs largely relies on the promoter-Cre-LoxP system, which often gives rise to contradictory conclusions with different promoters. Thus, reinvestigation with an improved tracing method is necessary. Here, using a laser-mediated temporal-spatial resolved cell labeling method, we demonstrated that most adult LCs originated from the ventral wall of the dorsal aorta (VDA), an equivalent to the mouse aorta, gonads, and mesonephros (AGM), where both hematopoietic stem cells (HSCs) and non-HSC progenitors are generated. Further fine-fate mapping analysis revealed that the appearance of LCs in adult zebrafish was correlated with the development of HSCs, but not T cell progenitors. Finally, we showed that the appearance of tissue-resident macrophages in the brain, liver, heart, and gut of adult zebrafish was also correlated with HSCs. Thus, the results of our study challenged the EMP-origin theory for LCs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and supplementary figures.

Article and author information

Author details

  1. Sicong He

    Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0399-3904
  2. Jiahao Chen

    Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yunyun Jiang

    Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yi Wu

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Lu Zhu

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Wan Jin

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Changlong Zhao

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  8. Tao Yu

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tienan Wang

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  10. Shuting Wu

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  11. Xi Lin

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  12. Jianan Y Qu

    Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  13. Zilong Wen

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  14. Wenqing Zhang

    Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
    For correspondence
    mczhangwq@scut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  15. Jin Xu

    Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou, China
    For correspondence
    xujin@scut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6840-1359

Funding

National Natural Science Foundation of China (31229003)

  • Zilong Wen

Research Grants Council, University Grants Committee (16102414)

  • Zilong Wen

Innovation and Technology Commission (ITCPD/17-9)

  • Zilong Wen

Research Grants Council, University Grants Committee (16103515)

  • Zilong Wen

Research Grants Council, University Grants Committee (HKUST5/CRF/12R)

  • Zilong Wen

Research Grants Council, University Grants Committee (AoE/M-09/12)

  • Zilong Wen

Research Grants Council, University Grants Committee (T13-607/12R)

  • Zilong Wen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,445
    views
  • 423
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sicong He
  2. Jiahao Chen
  3. Yunyun Jiang
  4. Yi Wu
  5. Lu Zhu
  6. Wan Jin
  7. Changlong Zhao
  8. Tao Yu
  9. Tienan Wang
  10. Shuting Wu
  11. Xi Lin
  12. Jianan Y Qu
  13. Zilong Wen
  14. Wenqing Zhang
  15. Jin Xu
(2018)
Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells
eLife 7:e36131.
https://doi.org/10.7554/eLife.36131

Share this article

https://doi.org/10.7554/eLife.36131

Further reading

    1. Stem Cells and Regenerative Medicine
    Jens Schuster, Xi Lu ... Xingqi Chen
    Research Article

    Dravet syndrome (DS) is a devastating early-onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. Induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors were used to model disease-associated epigenetic abnormalities of GABAergic development. Chromatin accessibility was assessed at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility were elucidated in GABAergic cells. The distinct dynamics in the chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development of some DS iPSC-GABA. The comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC offers valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, the detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve the development of personalized and targeted anti-epileptic therapies.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.