Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells

  1. Sicong He
  2. Jiahao Chen
  3. Yunyun Jiang
  4. Yi Wu
  5. Lu Zhu
  6. Wan Jin
  7. Changlong Zhao
  8. Tao Yu
  9. Tienan Wang
  10. Shuting Wu
  11. Xi Lin
  12. Jianan Y Qu
  13. Zilong Wen
  14. Wenqing Zhang  Is a corresponding author
  15. Jin Xu  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. Southern Medical University, China
  3. Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, China
  4. South China University of Technology, China

Abstract

The origin of Langerhans cells (LCs), which are skin epidermis-resident macrophages, remains unclear. Current lineage tracing of LCs largely relies on the promoter-Cre-LoxP system, which often gives rise to contradictory conclusions with different promoters. Thus, reinvestigation with an improved tracing method is necessary. Here, using a laser-mediated temporal-spatial resolved cell labeling method, we demonstrated that most adult LCs originated from the ventral wall of the dorsal aorta (VDA), an equivalent to the mouse aorta, gonads, and mesonephros (AGM), where both hematopoietic stem cells (HSCs) and non-HSC progenitors are generated. Further fine-fate mapping analysis revealed that the appearance of LCs in adult zebrafish was correlated with the development of HSCs, but not T cell progenitors. Finally, we showed that the appearance of tissue-resident macrophages in the brain, liver, heart, and gut of adult zebrafish was also correlated with HSCs. Thus, the results of our study challenged the EMP-origin theory for LCs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and supplementary figures.

Article and author information

Author details

  1. Sicong He

    Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0399-3904
  2. Jiahao Chen

    Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Yunyun Jiang

    Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yi Wu

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Lu Zhu

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Wan Jin

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  7. Changlong Zhao

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  8. Tao Yu

    Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tienan Wang

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  10. Shuting Wu

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  11. Xi Lin

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  12. Jianan Y Qu

    Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  13. Zilong Wen

    Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  14. Wenqing Zhang

    Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
    For correspondence
    mczhangwq@scut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  15. Jin Xu

    Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou, China
    For correspondence
    xujin@scut.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6840-1359

Funding

National Natural Science Foundation of China (31229003)

  • Zilong Wen

Research Grants Council, University Grants Committee (16102414)

  • Zilong Wen

Innovation and Technology Commission (ITCPD/17-9)

  • Zilong Wen

Research Grants Council, University Grants Committee (16103515)

  • Zilong Wen

Research Grants Council, University Grants Committee (HKUST5/CRF/12R)

  • Zilong Wen

Research Grants Council, University Grants Committee (AoE/M-09/12)

  • Zilong Wen

Research Grants Council, University Grants Committee (T13-607/12R)

  • Zilong Wen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Leonard I Zon, Boston Children's Hospital, United States

Version history

  1. Received: February 22, 2018
  2. Accepted: June 14, 2018
  3. Accepted Manuscript published: June 15, 2018 (version 1)
  4. Version of Record published: June 25, 2018 (version 2)

Copyright

© 2018, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,341
    Page views
  • 416
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sicong He
  2. Jiahao Chen
  3. Yunyun Jiang
  4. Yi Wu
  5. Lu Zhu
  6. Wan Jin
  7. Changlong Zhao
  8. Tao Yu
  9. Tienan Wang
  10. Shuting Wu
  11. Xi Lin
  12. Jianan Y Qu
  13. Zilong Wen
  14. Wenqing Zhang
  15. Jin Xu
(2018)
Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells
eLife 7:e36131.
https://doi.org/10.7554/eLife.36131

Further reading

    1. Stem Cells and Regenerative Medicine
    Lampros Mavrommatis, Hyun-Woo Jeong ... Holm Zaehres
    Research Article

    In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Lars N Royall, Diana Machado ... Annina Denoth-Lippuner
    Research Article Updated

    During human forebrain development, neural progenitor cells (NPCs) in the ventricular zone (VZ) undergo asymmetric cell divisions to produce a self-renewed progenitor cell, maintaining the potential to go through additional rounds of cell divisions, and differentiating daughter cells, populating the developing cortex. Previous work in the embryonic rodent brain suggested that the preferential inheritance of the pre-existing (older) centrosome to the self-renewed progenitor cell is required to maintain stem cell properties, ensuring proper neurogenesis. If asymmetric segregation of centrosomes occurs in NPCs of the developing human brain, which depends on unique molecular regulators and species-specific cellular composition, remains unknown. Using a novel, recombination-induced tag exchange-based genetic tool to birthdate and track the segregation of centrosomes over multiple cell divisions in human embryonic stem cell-derived regionalised forebrain organoids, we show the preferential inheritance of the older mother centrosome towards self-renewed NPCs. Aberration of asymmetric segregation of centrosomes by genetic manipulation of the centrosomal, microtubule-associated protein Ninein alters fate decisions of NPCs and their maintenance in the VZ of human cortical organoids. Thus, the data described here use a novel genetic approach to birthdate centrosomes in human cells and identify asymmetric inheritance of centrosomes as a mechanism to maintain self-renewal properties and to ensure proper neurogenesis in human NPCs.