Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation

  1. Gaojian Lian
  2. JN Rashida Gnanaprakasam
  3. Tingting Wang
  4. Ruohan Wu
  5. Xuyong Chen
  6. Lingling Liu
  7. Yuqing Shen
  8. Mao Yang
  9. Jun Yang
  10. Ying Chen
  11. Vasilis Vasiliou
  12. Teresa A Cassel
  13. Douglas R Green
  14. Yusen Liu
  15. Teresa Fan
  16. Ruoning Wang  Is a corresponding author
  1. The Research Institute at Nationwide Children's Hospital, United States
  2. St Jude Children's Research Hospital, United States
  3. Yale School of Public Health, Yale University, United States
  4. University of Kentucky, United States

Abstract

Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate-cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gaojian Lian

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. JN Rashida Gnanaprakasam

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tingting Wang

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruohan Wu

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xuyong Chen

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lingling Liu

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuqing Shen

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mao Yang

    Department of Immunology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jun Yang

    Department of Surgery, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ying Chen

    Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vasilis Vasiliou

    Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Teresa A Cassel

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Douglas R Green

    Department of Immunology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yusen Liu

    Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Teresa Fan

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ruoning Wang

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    For correspondence
    ruoning.wang@nationwidechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9798-8032

Funding

National Institutes of Health (R21AI117547)

  • Ruoning Wang

American Cancer Society (128436-RSG-15-180-01-LIB)

  • Ruoning Wang

National Institutes of Health (1R01AI114581)

  • Ruoning Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Ethics

Animal experimentation: Animal protocols were approved by the Institutional Animal Care and Use Committee of the Research Institute at Nationwide Children's Hospital (AR13-00055)

Version history

  1. Received: February 23, 2018
  2. Accepted: September 9, 2018
  3. Accepted Manuscript published: September 10, 2018 (version 1)
  4. Version of Record published: September 24, 2018 (version 2)

Copyright

© 2018, Lian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,947
    views
  • 655
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gaojian Lian
  2. JN Rashida Gnanaprakasam
  3. Tingting Wang
  4. Ruohan Wu
  5. Xuyong Chen
  6. Lingling Liu
  7. Yuqing Shen
  8. Mao Yang
  9. Jun Yang
  10. Ying Chen
  11. Vasilis Vasiliou
  12. Teresa A Cassel
  13. Douglas R Green
  14. Yusen Liu
  15. Teresa Fan
  16. Ruoning Wang
(2018)
Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation
eLife 7:e36158.
https://doi.org/10.7554/eLife.36158

Share this article

https://doi.org/10.7554/eLife.36158

Further reading

    1. Immunology and Inflammation
    Thomas Morgan Li, Victoria Zyulina ... Theresa T Lu
    Research Article Updated

    The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.

    1. Immunology and Inflammation
    Xiaochan Xu, Bjarke Frost Nielsen, Kim Sneppen
    Research Article

    SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape the early innate immune response. The delay has been attributed to a deficiency in the ability of cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotemporal spreading of viral infection as a function of virus and host-dependent parameters. The model suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a consequence of high sensitivity to slight variations in biological parameters near a critical threshold. It further suggests that within-host viral proliferation can be curtailed by the presence of remarkably few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness of cells reflects a remarkably cost-efficient strategy for protection.