Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation

  1. Gaojian Lian
  2. JN Rashida Gnanaprakasam
  3. Tingting Wang
  4. Ruohan Wu
  5. Xuyong Chen
  6. Lingling Liu
  7. Yuqing Shen
  8. Mao Yang
  9. Jun Yang
  10. Ying Chen
  11. Vasilis Vasiliou
  12. Teresa A Cassel
  13. Douglas R Green
  14. Yusen Liu
  15. Teresa Fan
  16. Ruoning Wang  Is a corresponding author
  1. The Research Institute at Nationwide Children's Hospital, United States
  2. St Jude Children's Research Hospital, United States
  3. Yale School of Public Health, Yale University, United States
  4. University of Kentucky, United States

Abstract

Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate-cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Gaojian Lian

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. JN Rashida Gnanaprakasam

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Tingting Wang

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruohan Wu

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xuyong Chen

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lingling Liu

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuqing Shen

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mao Yang

    Department of Immunology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jun Yang

    Department of Surgery, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ying Chen

    Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Vasilis Vasiliou

    Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Teresa A Cassel

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Douglas R Green

    Department of Immunology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Yusen Liu

    Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Teresa Fan

    Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Ruoning Wang

    Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital, Columbus, United States
    For correspondence
    ruoning.wang@nationwidechildrens.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9798-8032

Funding

National Institutes of Health (R21AI117547)

  • Ruoning Wang

American Cancer Society (128436-RSG-15-180-01-LIB)

  • Ruoning Wang

National Institutes of Health (1R01AI114581)

  • Ruoning Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal protocols were approved by the Institutional Animal Care and Use Committee of the Research Institute at Nationwide Children's Hospital (AR13-00055)

Copyright

© 2018, Lian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,217
    views
  • 690
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gaojian Lian
  2. JN Rashida Gnanaprakasam
  3. Tingting Wang
  4. Ruohan Wu
  5. Xuyong Chen
  6. Lingling Liu
  7. Yuqing Shen
  8. Mao Yang
  9. Jun Yang
  10. Ying Chen
  11. Vasilis Vasiliou
  12. Teresa A Cassel
  13. Douglas R Green
  14. Yusen Liu
  15. Teresa Fan
  16. Ruoning Wang
(2018)
Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation
eLife 7:e36158.
https://doi.org/10.7554/eLife.36158

Share this article

https://doi.org/10.7554/eLife.36158

Further reading

    1. Biochemistry and Chemical Biology
    2. Immunology and Inflammation
    Pavla Nedbalová, Nikola Kaislerova ... Tomáš Doležal
    Research Article

    During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Ana Cristina Chang-Gonzalez, Aoi Akitsu ... Wonmuk Hwang
    Research Advance

    Increasing evidence suggests that mechanical load on the αβ T-cell receptor (TCR) is crucial for recognizing the antigenic peptide-bound major histocompatibility complex (pMHC) molecule. Our recent all-atom molecular dynamics (MD) simulations revealed that the inter-domain motion of the TCR is responsible for the load-induced catch bond behavior of the TCR-pMHC complex and peptide discrimination (Chang-Gonzalez et al., 2024). To further examine the generality of the mechanism, we perform all-atom MD simulations of the B7 TCR under different conditions for comparison with our previous simulations of the A6 TCR. The two TCRs recognize the same pMHC and have similar interfaces with pMHC in crystal structures. We find that the B7 TCR-pMHC interface stabilizes under ∼15 pN load using a conserved dynamic allostery mechanism that involves the asymmetric motion of the TCR chassis. However, despite forming comparable contacts with pMHC as A6 in the crystal structure, B7 has fewer high-occupancy contacts with pMHC and exhibits higher mechanical compliance during the simulation. These results indicate that the dynamic allostery common to the TCRαβ chassis can amplify slight differences in interfacial contacts into distinctive mechanical responses and nuanced biological outcomes.