Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements

  1. Michael A Gaffield
  2. Matthew J M Rowan
  3. Samantha B Amat
  4. Hirokazu Hirai
  5. Jason Christie  Is a corresponding author
  1. Max Planck Florida Institute for Neuroscience, United States
  2. Gunma University, Japan

Abstract

Motor learning involves neural circuit modifications in the cerebellar cortex, likely through re-weighting of parallel fiber inputs onto Purkinje cells (PCs). Climbing fibers instruct these synaptic modifications when they excite PCs in conjunction with parallel fiber activity, a pairing that enhances climbing fiber-evoked Ca2+ signaling in PC dendrites. In vivo, climbing fibers spike continuously, including during movements when parallel fibers are simultaneously conveying sensorimotor information to PCs. Whether parallel fiber activity enhances climbing fiber Ca2+ signaling during motor behaviors is unknown. In mice, we found that inhibitory molecular layer interneurons (MLIs), activated by parallel fibers during practiced movements, suppressed parallel fiber enhancement of climbing fiber Ca2+ signaling in PCs. Similar results were obtained in acute slices for brief parallel fiber stimuli. Interestingly, more prolonged parallel fiber excitation revealed latent supralinear Ca2+ signaling. Therefore, the balance of parallel fiber and MLI input onto PCs regulates concomitant climbing fiber Ca2+ signaling.

Data availability

All data are included in the manuscript or the source data files.

Article and author information

Author details

  1. Michael A Gaffield

    Max Planck Florida Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Matthew J M Rowan

    Max Planck Florida Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samantha B Amat

    Max Planck Florida Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hirokazu Hirai

    Graduate School of Medicine, Gunma University, Maebashi, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Jason Christie

    Max Planck Florida Institute for Neuroscience, Jupiter, United States
    For correspondence
    jason.christie@mpfi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0276-2554

Funding

National Institutes of Health (NS083894)

  • Jason Christie

Max Planck Society

  • Jason Christie

Max Planck Florida Institute for Neuroscience

  • Jason Christie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jennifer L Raymond, Stanford School of Medicine, United States

Ethics

Animal experimentation: Animal procedures were conducted using protocol 15-205 approved by the Institutional Animal Care and Use Committee (IACUC) at Max Planck Florida Institute for Neuroscience.

Version history

  1. Received: February 26, 2018
  2. Accepted: August 16, 2018
  3. Accepted Manuscript published: August 17, 2018 (version 1)
  4. Version of Record published: September 3, 2018 (version 2)

Copyright

© 2018, Gaffield et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,138
    Page views
  • 381
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael A Gaffield
  2. Matthew J M Rowan
  3. Samantha B Amat
  4. Hirokazu Hirai
  5. Jason Christie
(2018)
Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements
eLife 7:e36246.
https://doi.org/10.7554/eLife.36246

Share this article

https://doi.org/10.7554/eLife.36246

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.