Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation, and loss

Abstract

Organ renewal is governed by the dynamics of cell division, differentiation, and loss. To study these dynamics in real time, we present a platform for extended live imaging of the adult Drosophila midgut, a premier genetic model for stem cell-based organs. A window cut into a living animal allows the midgut to be imaged while intact and physiologically functioning. This approach prolongs imaging sessions to 12-16 hours and yields movies that document cell and tissue dynamics at vivid spatiotemporal resolution. Applying a pipeline for movie processing and analysis, we uncover new, intriguing cell behaviors: that mitotic stem cells dynamically re-orient, that daughter cells use slow kinetics of Notch activation to reach a fate-specifying threshold, and that enterocytes extrude via ratcheted constriction of a junctional ring. By enabling real-time study of midgut phenomena that were previously inaccessible, our platform opens a new realm for dynamic understanding of adult organ renewal.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files for figures have also been uploaded to Dryad (https://dx.doi.org/10.5061/dryad.1v1g1b0).

The following data sets were generated

Article and author information

Author details

  1. Judy Lisette Martin

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    jlmart@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin Nicole Sanders

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paola Moreno-Roman

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leslie Ann Jaramillo Koyama

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shruthi Balachandra

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. XinXin Du

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucy Erin O'Brien

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    lucye@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7660-2524

Funding

National Institutes of Health (R01GM116000-01A1)

  • Judy Lisette Martin
  • Erin Nicole Sanders
  • Paola Moreno-Roman
  • Leslie Ann Jaramillo Koyama
  • Shruthi Balachandra
  • XinXin Du
  • Lucy Erin O'Brien

National Institutes of Health (1F31GM123736-01)

  • Leslie Ann Jaramillo Koyama

National Institutes of Health (Stanford Discovery Fund Innovation Program)

  • Lucy Erin O'Brien

Stanford University (Center for Biomedical Imaging at Stanford Seed Grant)

  • Judy Lisette Martin
  • Lucy Erin O'Brien

National Science Foundation (GRFP DGE-1656518)

  • Erin Nicole Sanders

National Institutes of Health (2T32GM00779038)

  • Erin Nicole Sanders
  • Leslie Ann Jaramillo Koyama

William K. Bowes, Jr. Foundation (Stanford Bio X Bowes Graduate Fellowship)

  • Paola Moreno-Roman

Stanford University (Stanford DARE (Diversifying Academia Recruiting Excellence) Fellowship)

  • Paola Moreno-Roman

National Institutes of Health (NRSA 1F32GM115065)

  • XinXin Du

Stanford University (Stanford Dean's Postdoctoral Fellowship)

  • XinXin Du

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Martin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,761
    views
  • 991
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judy Lisette Martin
  2. Erin Nicole Sanders
  3. Paola Moreno-Roman
  4. Leslie Ann Jaramillo Koyama
  5. Shruthi Balachandra
  6. XinXin Du
  7. Lucy Erin O'Brien
(2018)
Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation, and loss
eLife 7:e36248.
https://doi.org/10.7554/eLife.36248

Share this article

https://doi.org/10.7554/eLife.36248

Further reading

    1. Stem Cells and Regenerative Medicine
    Sujeethkumar Prithiviraj, Alejandro Garcia Garcia ... Paul E Bourgine
    Research Article

    Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Joshua G Medina-Feliciano, Griselle Valentín-Tirado ... José E Garcia-Arraras
    Research Article

    In holothurians, the regenerative process following evisceration involves the development of a ‘rudiment’ or ‘anlage’ at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.