Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects

Abstract

Endophytic insects provide the textbook examples of herbivores that manipulate their host plant's physiology, putatively altering source/sink relationships by transferring cytokinins (CK) to create 'green islands' that increase the nutritional value of infested tissues. However, unambiguous demonstrations of CK transfer are lacking. Here we show that feeding by the free-living herbivore Tupiocoris notatus on Nicotiana attenuata is characterized by stable nutrient levels, increased CK levels and alterations in CK-related transcript levels in attacked leaves, in striking similarity to endophytic insects. Using 15N-isotope labeling, we demonstrate that the CK N6-isopentenyladenine (IP) is transferred from insects to plants via their oral secretions. In the field, T. notatus preferentially attacks leaves with transgenically increased CK levels; plants with abrogated CK-perception are less tolerant of T. notatus feeding damage. We infer that this free-living insect uses CKs to manipulate source/sink relationships to increase food quality and minimize the fitness consequences of its feeding.

Data availability

All data generated or analysed during this study are available on Dryad Digital Repository

The following data sets were generated

Article and author information

Author details

  1. Christoph Brütting

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  2. Cristina Maria Crava

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3774-4567
  3. Martin Schäfer

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  4. Meredith C Schuman

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3159-3534
  5. Stefan Meldau

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  6. Nora Adam

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  7. Ian T Baldwin

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    baldwin@ice.mpg.de
    Competing interests
    Ian T Baldwin, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5371-2974

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Christoph Brütting
  • Cristina Maria Crava
  • Martin Schäfer
  • Meredith C Schuman
  • Stefan Meldau
  • Nora Adam
  • Ian T Baldwin

European Commission (ERC Advanced Grant no. 293926)

  • Christoph Brütting
  • Meredith C Schuman
  • Stefan Meldau

Deutsche Forschungsgemeinschaft (Collaborative Research Centre)

  • Cristina Maria Crava
  • Martin Schäfer

German Center for Integrative Biodiversity Research

  • Nora Adam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Brütting et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,280
    views
  • 384
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christoph Brütting
  2. Cristina Maria Crava
  3. Martin Schäfer
  4. Meredith C Schuman
  5. Stefan Meldau
  6. Nora Adam
  7. Ian T Baldwin
(2018)
Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects
eLife 7:e36268.
https://doi.org/10.7554/eLife.36268

Share this article

https://doi.org/10.7554/eLife.36268

Further reading

    1. Ecology
    Cody A Freas, Ajay Narenda ... Ken Cheng
    Research Article

    For the first time in any animal, we show that nocturnal bull ants use the exceedingly dim polarisation pattern produced by the moon for overnight navigation. The sun or moon can provide directional information via their position; however, they can often be obstructed by clouds, canopy, or the horizon. Despite being hidden, these bodies can still provide compass information through the polarised light pattern they produce/reflect. Sunlight produces polarised light patterns across the overhead sky as it enters the atmosphere, and solar polarised light is a well-known compass cue for navigating animals. Moonlight produces an analogous pattern, albeit a million times dimmer than sunlight. Here, we show evidence that polarised moonlight forms part of the celestial compass of navigating nocturnal ants. Nocturnal bull ants leave their nest at twilight and rely heavily on the overhead solar polarisation pattern to navigate. Yet many foragers return home overnight when the sun cannot guide them. We demonstrate that these bull ants use polarised moonlight to navigate home during the night, by rotating the overhead polarisation pattern above homing ants, who alter their headings in response. Furthermore, these ants can detect this cue throughout the lunar month, even under crescent moons, when polarised light levels are at their lowest. Finally, we show the long-term incorporation of this moonlight pattern into the ants’ path integration system throughout the night for homing, as polarised sunlight is incorporated throughout the day.

    1. Ecology
    Juan Liu, Morgan W Tingley ... Xingfeng Si
    Research Article

    Climatic warming can shift community composition driven by the colonization-extinction dynamics of species with different thermal preferences; but simultaneously, habitat fragmentation can mediate species’ responses to warming. As this potential interactive effect has proven difficult to test empirically, we collected data on birds over 10 years of climate warming in a reservoir subtropical island system that was formed 65 years ago. We investigated how the mechanisms underlying climate-driven directional change in community composition were mediated by habitat fragmentation. We found thermophilization driven by increasing warm-adapted species and decreasing cold-adapted species in terms of trends in colonization rate, extinction rate, occupancy rate and population size. Critically, colonization rates of warm-adapted species increased faster temporally on smaller or less isolated islands; cold-adapted species generally were lost more quickly temporally on closer islands. This provides support for dispersal limitation and microclimate buffering as primary proxies by which habitat fragmentation mediates species range shift. Overall, this study advances our understanding of biodiversity responses to interacting global change drivers.