1. Ecology
  2. Plant Biology
Download icon

Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects

Research Article
  • Cited 14
  • Views 2,032
  • Annotations
Cite this article as: eLife 2018;7:e36268 doi: 10.7554/eLife.36268

Abstract

Endophytic insects provide the textbook examples of herbivores that manipulate their host plant's physiology, putatively altering source/sink relationships by transferring cytokinins (CK) to create 'green islands' that increase the nutritional value of infested tissues. However, unambiguous demonstrations of CK transfer are lacking. Here we show that feeding by the free-living herbivore Tupiocoris notatus on Nicotiana attenuata is characterized by stable nutrient levels, increased CK levels and alterations in CK-related transcript levels in attacked leaves, in striking similarity to endophytic insects. Using 15N-isotope labeling, we demonstrate that the CK N6-isopentenyladenine (IP) is transferred from insects to plants via their oral secretions. In the field, T. notatus preferentially attacks leaves with transgenically increased CK levels; plants with abrogated CK-perception are less tolerant of T. notatus feeding damage. We infer that this free-living insect uses CKs to manipulate source/sink relationships to increase food quality and minimize the fitness consequences of its feeding.

Data availability

All data generated or analysed during this study are available on Dryad Digital Repository

The following data sets were generated

Article and author information

Author details

  1. Christoph Brütting

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  2. Cristina Maria Crava

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3774-4567
  3. Martin Schäfer

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  4. Meredith C Schuman

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3159-3534
  5. Stefan Meldau

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  6. Nora Adam

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  7. Ian T Baldwin

    Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    baldwin@ice.mpg.de
    Competing interests
    Ian T Baldwin, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5371-2974

Funding

Max-Planck-Gesellschaft (Open-access funding)

  • Christoph Brütting
  • Cristina Maria Crava
  • Martin Schäfer
  • Meredith C Schuman
  • Stefan Meldau
  • Nora Adam
  • Ian T Baldwin

European Commission (ERC Advanced Grant no. 293926)

  • Christoph Brütting
  • Meredith C Schuman
  • Stefan Meldau

Deutsche Forschungsgemeinschaft (Collaborative Research Centre)

  • Cristina Maria Crava
  • Martin Schäfer

German Center for Integrative Biodiversity Research

  • Nora Adam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joerg Bohlmann, University of British Columbia, Canada

Publication history

  1. Received: March 1, 2018
  2. Accepted: July 5, 2018
  3. Accepted Manuscript published: July 17, 2018 (version 1)
  4. Version of Record published: July 25, 2018 (version 2)
  5. Version of Record updated: July 26, 2018 (version 3)

Copyright

© 2018, Brütting et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,032
    Page views
  • 354
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Plant Biology
    Emanuela Cristiani et al.
    Research Article Updated

    Forager focus on wild cereal plants has been documented in the core zone of domestication in southwestern Asia, while evidence for forager use of wild grass grains remains sporadic elsewhere. In this paper, we present starch grain and phytolith analyses of dental calculus from 60 Mesolithic and Early Neolithic individuals from five sites in the Danube Gorges of the central Balkans. This zone was inhabited by likely complex Holocene foragers for several millennia before the appearance of the first farmers ~6200 cal BC. We also analyzed forager ground stone tools (GSTs) for evidence of plant processing. Our results based on the study of dental calculus show that certain species of Poaceae (species of the genus Aegilops) were used since the Early Mesolithic, while GSTs exhibit traces of a developed grass grain processing technology. The adoption of domesticated plants in this region after ~6500 cal BC might have been eased by the existing familiarity with wild cereals.

    1. Ecology
    2. Epidemiology and Global Health
    Marie C Russell et al.
    Research Article

    Predator-prey interactions influence prey traits through both consumptive and non-consumptive effects, and variation in these traits can shape vector-borne disease dynamics. Meta-analysis methods were employed to generate predation effect sizes by different categories of predators and mosquito prey. This analysis showed that multiple families of aquatic predators are effective in consumptively reducing mosquito survival, and that the survival of Aedes, Anopheles, and Culex mosquitoes is negatively impacted by consumptive effects of predators. Mosquito larval size was found to play a more important role in explaining the heterogeneity of consumptive effects from predators than mosquito genus. Mosquito survival and body size were reduced by non-consumptive effects of predators, but development time was not significantly impacted. In addition, Culex vectors demonstrated predator avoidance behavior during oviposition. The results of this meta-analysis suggest that predators limit disease transmission by reducing both vector survival and vector size, and that associations between drought and human West Nile virus cases could be driven by the vector behavior of predator avoidance during oviposition. These findings are likely to be useful to infectious disease modelers who rely on vector traits as predictors of transmission.