Recruitment of two dyneins to an mRNA-dependent Bicaudal D transport complex

  1. Thomas E Sladewski
  2. Neil Billington
  3. M Yusuf Ali
  4. Carol S Bookwalter
  5. Hailong Lu
  6. Elena B Krementsova
  7. Trina A Schroer
  8. Kathleen M Trybus  Is a corresponding author
  1. University of Vermont, United States
  2. National Heart, Lung and Blood Institute, National Institutes of Health, United States
  3. Johns Hopkins University, United States

Abstract

We investigated the role of full-length Drosophila Bicaudal D (BicD) binding partners in dynein-dynactin activation for mRNA transport on microtubules. Full-length BicD robustly activated dynein-dynactin motility only when both the mRNA binding protein Egalitarian (Egl) and K10 mRNA cargo were present, and electron microscopy showed that both Egl and mRNA were needed to disrupt a looped, auto-inhibited BicD conformation. BicD can recruit two dimeric dyneins, resulting in faster speeds and longer runs than with one dynein. Moving complexes predominantly contained two Egl molecules and one K10 mRNA. This mRNA-bound configuration makes Egl bivalent, likely enhancing its avidity for BicD and thus its ability to disrupt BicD auto-inhibition. Consistent with this idea, artificially dimerized Egl activates dynein-dynactin-BicD in the absence of mRNA. The ability of mRNA cargo to orchestrate the activation of the mRNP (messenger ribonucleotide protein) complex is an elegant way to ensure that only cargo-bound motors are motile.

Data availability

Data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been included for Figures 1, 4-10.

Article and author information

Author details

  1. Thomas E Sladewski

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Neil Billington

    Laboratory of Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2306-0228
  3. M Yusuf Ali

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carol S Bookwalter

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hailong Lu

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Elena B Krementsova

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Trina A Schroer

    Department of Biology, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5065-1835
  8. Kathleen M Trybus

    Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
    For correspondence
    kathleen.trybus@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5583-8500

Funding

National Institutes of Health (GM078097)

  • Kathleen M Trybus

American Heart Association (12SDG11930002)

  • M Yusuf Ali

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,970
    views
  • 373
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas E Sladewski
  2. Neil Billington
  3. M Yusuf Ali
  4. Carol S Bookwalter
  5. Hailong Lu
  6. Elena B Krementsova
  7. Trina A Schroer
  8. Kathleen M Trybus
(2018)
Recruitment of two dyneins to an mRNA-dependent Bicaudal D transport complex
eLife 7:e36306.
https://doi.org/10.7554/eLife.36306

Share this article

https://doi.org/10.7554/eLife.36306

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.