RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs

Abstract

Polarised mRNA transport is a prevalent mechanism for spatial control of protein synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the regulation of their movement are poorly understood. We have reconstituted microtubule minus end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Mark A McClintock

    Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Carly I Dix

    Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    Carly I Dix, is currently affiliated with AstraZeneca Discovery Sciences. The research was conducted when the author was still at the MRC Laboratory of Molecular Biology. The author has no other financial interests to declare.
  3. Christopher M Johnson

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Stephen H McLaughlin

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9135-6253
  5. Rory J Maizels

    Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ha Thi Hoang

    Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    Ha Thi Hoang, is currently affiliated with MicroInventa Limited. The research was conducted when the author was still at the MRC Laboratory of Molecular Biology. The author has no other financial interests to declare.
  7. Simon L Bullock

    Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    sbullock@mrc-lmb.cam.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9491-4548

Funding

Medical Research Council (MC_U105178790)

  • Mark A McClintock
  • Carly I Dix
  • Christopher M Johnson
  • Stephen H McLaughlin
  • Rory J Maizels
  • Ha Thi Hoang
  • Simon L Bullock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, McClintock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,670
    views
  • 475
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark A McClintock
  2. Carly I Dix
  3. Christopher M Johnson
  4. Stephen H McLaughlin
  5. Rory J Maizels
  6. Ha Thi Hoang
  7. Simon L Bullock
(2018)
RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs
eLife 7:e36312.
https://doi.org/10.7554/eLife.36312

Share this article

https://doi.org/10.7554/eLife.36312

Further reading

    1. Cell Biology
    2. Neuroscience
    Naoki Yamawaki, Hande Login ... Asami Tanimura
    Research Article

    The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.